
Air-hockey Robot

SW503
30th of January 2020



Introduction



Results from the Project

• We implement the controllers to match their respective models as much as
possible.

• We expect the performance scores to match the models.
• Our experiments show that the block-rate is a lot lower.

• The model shows a block-rate of 67.2%
• Experiments had a block-rate of 24%

• It must be a difference between the model and the implementation.
• Non-representative model.
• Incorrect implementation.

1



Non-representative Model: Detection is Error-prone

• The object detection relies on colour, which we expect works well with the
contrast of the puck.

• However, sometimes the puck was never detected.
• Making the model representative of the environment:

• Include detection failures in the model.
• Use a different detection implementation.

2



Non-representative Model: The Camera Grid is Warped

• The Pixy series of cameras have slight fish-eye lens.
• This means that the positions received do not have linear correspondence
between the assumed positions of camera and mallet.

• Making the model representative of the environment:
• Correcting the warp with a mapping from warped grid to straight grid.
• Including the warp in the model.
• Using a camera with less warp.

3



Non-representative Model: Camera and Table Coordinates Desyncs

• The camera coordinate system is lined up once, and never calibrated again.
• Shiǒting could make the robot worse because every prediction is offset.

• Making the model representative of the environment:
• Calibration can be done more oǒten.
• Model the calibration issues.

4



Incorrect Implementation: Measurements Lost in Translation

• Model uses both centimeters, and Pixy detection cells.
• Implementation uses just detection cells.

• The table size was then incorrectly translated to detection cells from
centimeters in the implementation.

• Making the implementation more faithful to the model:
• Correctly translating centimeters to detection cells in the implementation.

5



Incorrect Implementation: Missing Steps

• Trying to move the mallet at top speed immediately, results in the stepper
motor missing steps.

• The electromagnets activate faster than they can pull the axle.
• Making the implementation more faithful to the model:

• Implement the acceleration curve as modelled.
• Making the model representative of the environment:

• Use a stronger power supply and removing the modelled acceleration curve.
• Correcting the model to include missing steps.
• Moving the mallet at a slower rate.

• Now the implementation of the mallet becomes unrepresentative of the model.

6



Revising the Robot



The Revision

The Goal: We want to block air-hockey shots via an autonomous robot.

Figure 1: An Air-hockey table

7



The Single-axis Robot Design

• Single axis is enough to block the puck if enough information is gathered,
and the mallet moves fast enough.

• We can gather information with the help of a camera.
• The mallet can move along a rail with the assistance of a stepper motor.

Figure 2: The single-axis robot design.
8



The Camera

• Pixy cameras come with built-in object detection via color recognition.
• This allows for the transfer of recognised objects instead of pixel data via a
serial connection.

• The detection resolution is 320 by 210 cells.
• Each cell is around 1

3 of a centimeter.
• Alternatively, writing our own object detection.

• Greater control over algorithm used.
• The usage of background subtraction.
• Reduce misidentification of hands and mallets as the puck.

• The Pixy 1 captures 50 frames per second and the Pixy 2 captures 60.
• The Pixy 1 can capture 6.25 pictures for the fastest shots.
• The Pixy 2 can capture 7.5 pictures for the fastest shots.

9



The Motor

• The motor is controlled by specifying a direction and pulsing the motor every
time it has to take a step.

• To move faster, pulsing will need to be faster.
• Counting steps gives the precise location of the mallet.
• Requires pulsing constantly.
• The mallet can be moved at 1.3ms .

• Alternatively, the robot could have used a DC motor.
• It requires a different way of finding the mallet position.
• It can be faster and simply requires specifying the direction to move.

Figure 3: The amount of distance that can be moved during a shot
10



Designing a Controller



How Can We Play Air-hockey?

• We can program an algorithm that attempts to emulate human behaviour.
• It is based on known succesful strategies.
• It can only be as succesfull as the strategies the programmers know.

• Alternatively, we can use machine learning to learn an algorithm that can
play.

• It might find new ways of playing.
• Internal preliminary experiments showed no positive results.

11



How Can We Emulate Humans Playing Air-hockey?

• We approximate the human process with three steps:
• Gathering information: Detecting the puck.
• Processing information: Predicting where the puck will end up.
• Reacting: Moving the mallet to block the shot.

12



The Three Phases



Gathering information

• How can we find the information?
• We find the puck via the Pixy camera by polling it via the serial connection.

• If we processed the image data manually.
• The prediction info could assist in the object detection.

• Gathering data would work the same for both types of control.

13



Processing information

• Prediction is based on experiments.
• What we learned:

• The puck does not move just as fast aǒter rebounding.
• The puck has an imperfect reflection.

• We assume:
• The puck moves linearly.
• Zero air resistance.
• Zero surface resistance.
• The position of the mallet is always known.
• The camera can see the entire field.
• The camera coordinates are directly translatable to positions on the table.
• The gathered positions are correct.
• The table is a rectangle.

14



Reacting

Figure 4: Three-step decision making

• We use simple three-step control to move the mallet.
• This assumes that if we brake, we will stay at the prediction.
• Other control methods might offer more accuracy:

• PID control is almost universal.
• Reverse the acceleration curve to find stopping point.

15



Finding the Controller



The Controller Design

• From the three phases we can create a controller that performs three steps.
• We create many variations of the controllers.

• By further development
• By combining controllers

• How can we know which variant to choose?
• We can compare them and select the best performing ones.

16



Comparing Controllers

• We can compare by a quantitative value:
Utility = Blocking Rate− 0.005

1 · Average Travelled Distance
• The comparison value focuses on the two factors:

• The blocking rate as this is the most important for achieving the goal.
• The travelled distance to slightly prioritise more efficient controllers.

• There is no focus on:
• Computation time.
• Frequency of change in direction of the mallet.

• Collection of data about the controllers could be performed by:
• Implementation and experiments to get the blocking rate and distance moved.
• Modelling and simulations can figure out more data about controllers faster.

17



Modelling the Robot



Modelling the System in UPPAAL

• We can use hybrid timed automata to model the system.
• Divide the system into four subsystems:

• Mallet
• Puck
• Camera
• Controller

18



Mallet Model

Figure 5: The model of the mallet. 19



Puck Model

Figure 6: The model of the puck.
20



Camera Model

Figure 7: The model of the camera. 21



Controller Models

Figure 8: The model of the controllers.

22



Simulations

• Were simulations the right way to gather data?
• We can run thousands of simulations quickly.
• The model experiments can be evenly distributed.
• Real life play will depend on the person playing with goals targeting the goal.

• The performance scores are easily calculated from the simulation-data.
• We can select the top performers for implementation.

23



Implementing the Controller



Choosing a Platform

• Control over scheduling
• To make a scheduling guarantee more available.

• Processor speed
• Processors that are too fast waste cycles and are more expensive.

• I/O ports
• Control of the stepper require certain I/O capabilities.
• Limit-buttons also require I/O.

• Price
• Unnecesarily fast platforms waste money.

• We ended up choosing Arduino as the platform for implementation.

24



Implementing Controllers for Arduino

• The goal is to implement the model faithfully.
• We try to use the model code directly where possible

• Some calculations in UPPAAL are done in C which allows direct transfer.
• Emulating the model transitions as close as possible.

• Find pseudocode that matches transition choices.
• Controllers that are combined in the model, are also a combination in the
code.

• The implementation has to worry about timings that are not in the model.

25



Timing Constraints

• We have to find what timings affect the implementation.
• There are three main environmental constraints

• Maximum speed of the puck is 8ms and the playing field length is 1m so a fast
shot takes 1

8s.
• Stepper pulse rate of 325µs to∞µs.
• Camera serial transfer takes around 80µs.

• The controller imposes real-time requirements as well.
• Calculation times of the more advanced predictions are high.

26



Scheduling the Tasks

Task Cost Period Deadline

R 50 >325 50
S 1600 none 20000

Task Cost Period Deadline Part

R 50 >325 50 50
S 1600 none 20000 <275

Table 1: Task data

• These tasks are not schedulable by a simple cyclic executive scheduler.
• The cost of Sensing is bigger than the period of Reaction.
• The Reaction has a varying period.

• We will need to make some changes to schedule it cyclically:
• The Sensing task could be split into smaller parts and executed one part at a
time.

• The Reaction could run oǒten and only when applicable, but it will require
rounding the acceleration curve. 27



Designing the Scheduler

• We avoid preemption because the serial communication can not be
preempted without redoing the communication

• The data could be lost from the Pixy from a interrupted transfer.
• We use a custom scheduling algorithm.
• It can be defined as a variable-priority scheduler by:

• It requires that we always choose the task with highest priority regardless of
release status.

• P(Reaction) = 0
• P(Sensing) = Time until Reaction release− Cost of Sensing

• We can also see it as a fixed-priority scheduler.
• Lower priority tasks will not be scheduled if higher priority tasks will be
released during execution.

• P(Reaction) > P(Sensing)

28



Verifying the Scheduler



Verifying the Scheduler Design

• How can we verify the scheduler design?
• We can create a model of the scheduler and verify it.

• We make a timed automaton representing the scheduler.
• We can then use UPPAAL to verify the model using queries about the
scheduler.

29



Model of the Task

Figure 9: The timed automaton of the task 30



Improved Model of the Task

Figure 10: The timed automaton of the task 31



Model of the Scheduler

Figure 11: The timed automaton of the scheduler 32



Improved Model of the Scheduler

Figure 12: The timed automaton of the scheduler 33



Implementing the Scheduler

• UPPAAL shows that:
• The deadlines are not broken.
• The scheduler will not deadlock.

• To implement the UPPAAL model we work from pseudocode that emulates
the model:
Algorithm 1: The scheduling algorithm
while running do

if R is ready or R Release− C(Sensing) < 0 then
wait until R is released;
execute R;

else
execute S part;

• This is then turned into real code for the Arduino. 34



The Resulting Robot



Improvement results

• Now that the model and implementation has been changed to take our
considerations into account.

• We redo the simulations, which shows a 48.2%± 0.5 catch-rate for the
improved model

• Experiments with the implementation was conducted by doing two series of
100 shots.

• The experiments showed a 46% and a 42% block-rate for the improved
implementation.

• The new results are a lot closer, which could suggest that:
• The model fits the the real world better.
• The implementation is more true to the model.

35



Demo



Appendix



Movement Requirements

• Moving the mallet to minimise distance with the mallet (Bangbang control)
• Requires that the mallet moves just as fast as the transverse movement of the
puck (8ms )

• Only requires a single known position for the puck.
• Looking at where the puck is and where it is moving to (Linear extrapolation)

• Requires at least two known positions of the puck.
• 1

8 th of a second across 70cm requires a speed of 5.6ms

36



The Top Speed of the Mallet

• The motor requires 400 pulses per rotation of the axle.
• One rotation is 170mm movement of the mallet.

• 85 teeth with a pitch of 2mm.
• We have 1

8 of a second for a fast shot.
• 1m of playing field and 8ms .

• We can pulse every 325µs because of the controller and powersupply.
• This is ~384 steps for a fast shot.

•
1
8
m
s

325µs

• So we can move 163mm during a fast shot.
• 384

400 ∗ 170mm

37


	Introduction
	Revising the Robot
	Designing a Controller
	The Three Phases
	Finding the Controller
	Modelling the Robot
	Implementing the Controller 
	Verifying the Scheduler
	The Resulting Robot
	Demo
	Appendix

