Air-hockey Robot

SW503
30th of January 2020

Introduction

Results from the Project

- We implement the controllers to match their respective models as much as
possible.

- We expect the performance scores to match the models.
- Our experiments show that the block-rate is a lot lower.
- The model shows a block-rate of 67.2%
- Experiments had a block-rate of 24%
- It must be a difference between the model and the implementation.

- Non-representative model.
- Incorrect implementation.

Non-representative Model: Detection is Error-prone

- The object detection relies on colour, which we expect works well with the
contrast of the puck.

- However, sometimes the puck was never detected.
- Making the model representative of the environment:

- Include detection failures in the model.
- Use a different detection implementation.

Non-representative Model: The Camera Grid is Warped

- The Pixy series of cameras have slight fish-eye lens.
- This means that the positions received do not have linear correspondence
between the assumed positions of camera and mallet.
- Making the model representative of the environment:
- Correcting the warp with a mapping from warped grid to straight grid.
- Including the warp in the model.
- Using a camera with less warp.

Non-representative Model: Camera and Table Coordinates Desyncs

- The camera coordinate system is lined up once, and never calibrated again.
- Shifting could make the robot worse because every prediction is offset.
- Making the model representative of the environment:

- Calibration can be done more often.
- Model the calibration issues.

Incorrect Implementation: Measurements Lost in Translation

- Model uses both centimeters, and Pixy detection cells.
- Implementation uses just detection cells.

- The table size was then incorrectly translated to detection cells from
centimeters in the implementation.

- Making the implementation more faithful to the model:
- Correctly translating centimeters to detection cells in the implementation.

Incorrect Implementation: Missing Steps

- Trying to move the mallet at top speed immediately, results in the stepper
motor missing steps.

- The electromagnets activate faster than they can pull the axle.
- Making the implementation more faithful to the model:

- Implement the acceleration curve as modelled.
- Making the model representative of the environment:

- Use a stronger power supply and removing the modelled acceleration curve.
- Correcting the model to include missing steps.
- Moving the mallet at a slower rate.

- Now the implementation of the mallet becomes unrepresentative of the model.

Revising the Robot

The Goal: We want to block air-hockey shots via an autonomous robot.

Figure 1: An Air-hockey table

The Single-axis Robot Design

- Single axis is enough to block the puck if enough information is gathered,
and the mallet moves fast enough.
- We can gather information with the help of a camera.
- The mallet can move along a rail with the assistance of a stepper motor.

Figure 2: The single-axis robot design.

- Pixy cameras come with built-in object detection via color recognition.

- This allows for the transfer of recognised objects instead of pixel data via a
serial connection.

- The detection resolution is 320 by 210 cells.
- Each cell is around { of a centimeter.
- Alternatively, writing our own object detection.
- Greater control over algorithm used.
- The usage of background subtraction.
- Reduce misidentification of hands and mallets as the puck.
- The Pixy 1 captures 50 frames per second and the Pixy 2 captures 60.

- The Pixy 1 can capture 6.25 pictures for the fastest shots.
- The Pixy 2 can capture 75 pictures for the fastest shots.

The Motor

- The motor is controlled by specifying a direction and pulsing the motor every
time it has to take a step.
- To move faster, pulsing will need to be faster.
- Counting steps gives the precise location of the mallet.
- Requires pulsing constantly.
+ The mallet can be moved at 1.37.
- Alternatively, the robot could have used a DC motor.
- It requires a different way of finding the mallet position.
- It can be faster and simply requires specifying the direction to move.

16.25cm 23% ﬁ

. : , 10
Figure 3: The amount of distance that can be moved during a shot

Designing a Controller

How Can We Play Air-hockey?

- We can program an algorithm that attempts to emulate human behaviour.

- It is based on known succesful strategies.
- It can only be as succesfull as the strategies the programmers know.

- Alternatively, we can use machine learning to learn an algorithm that can
play.
- It might find new ways of playing.
- Internal preliminary experiments showed no positive results.

1

How Can We Emulate Humans Playing Air-hockey?

- We approximate the human process with three steps:

- Gathering information: Detecting the puck.
- Processing information: Predicting where the puck will end up.
- Reacting: Moving the mallet to block the shot.

12

The Three Phases

Gathering information

- How can we find the information?
- We find the puck via the Pixy camera by polling it via the serial connection.

- If we processed the image data manually.
- The prediction info could assist in the object detection.

- Gathering data would work the same for both types of control.

13

Processing information

- Prediction is based on experiments.
- What we learned:

- The puck does not move just as fast after rebounding.
- The puck has an imperfect reflection.

- We assume:
- The puck moves linearly.
- Zero air resistance.
- Zero surface resistance.
- The position of the mallet is always known.
- The camera can see the entire field.
- The camera coordinates are directly translatable to positions on the table.
- The gathered positions are correct.
- The table is a rectangle.

MalletUnderPuck

Figure 4: Three-step decision making

- We use simple three-step control to move the mallet.
- This assumes that if we brake, we will stay at the prediction.
- Other control methods might offer more accuracy:

- PID control is almost universal.
- Reverse the acceleration curve to find stopping point.

15

Finding the Controller

The Controller Design

- From the three phases we can create a controller that performs three steps.
- We create many variations of the controllers.

- By further development

- By combining controllers
- How can we know which variant to choose?

- We can compare them and select the best performing ones.

Comparing Controllers

- We can compare by a quantitative value:
Utility = Blocking Rate — % - Average Travelled Distance
- The comparison value focuses on the two factors:
- The blocking rate as this is the most important for achieving the goal.
- The travelled distance to slightly prioritise more efficient controllers.
- There is no focus on:
- Computation time.
- Frequency of change in direction of the mallet.
- Collection of data about the controllers could be performed by:

- Implementation and experiments to get the blocking rate and distance moved.
- Modelling and simulations can figure out more data about controllers faster.

Modelling the Robot

Modelling the System in UPPAAL

- We can use hybrid timed automata to model the system.
- Divide the system into four subsystems:

- Mallet

- Puck

- Camera

- Controller

Mallet Model

lisZero(acceleration) and
direction > 0 and

/2 lisZero(acceleration) and
direction < 0 and
0

_ Speed =0,

Stopped
speed and
= fabs(speed) and
acceleration |

distance '
speed '

i
mallet = malletStart()!

1

direction = 1,

)
I

I

| mallet_up?

|

| .

Il acceleration = mallet_acceleration

mallet_down?
direction = -1,
acceleration = -mallet_acceleration

mallet_stop?
acceleration = mallet_decceleration * -1 * direction

|
|

|

|

|

3
S
|

1

I

1

|

|

|

'

\

\
N

Figure 5: The model of the mallet.

direction < 0
mallet_up?
direction = 1

direction > 0
mallet_down?
direction = -1

Moving
" mallet '
\distance
epeed '== acceleration

peed and
fabs(speed) and

lisZero(acceleration) and
direction > 0 and

“\speed >
speed

mallet_speed 7

allet_speed

lisZero(acceleration) and
direction < 0 and

" gpeed
speed

mallet_speed

Puck Model

Start
x = random(30),

\ y = random(tablemax - 2 * puck_radius) + puck_radius,
| vx = random(1),
| vy = random(1)

l
|
} bm B ‘ y + puck_radius >= tablemax && vy > 0
X '== vx && v vy = reboundY(vy), vx = reboundX{vx)

puck_radius <= tablemin && vy < 0

DN vy = rebourdY(vy) vx = reboundX{vx)
‘ bo 1”’?‘
| time >= 50

1 vx = (max_puck_speed / 2.0) + random(max_puck_speed / 2),
1 vy = (random(2) - 1) * sgrt{(pow{max_puck_speed, 2) - pow(vx, 2))
i

) 1
\ m rp\ y + puck_radius >= tablemax && vy > 0

= vy && i vy = reboundY(vy), vx = reboundX{vx)

y - puck_radius <= tablemin && vy < 0

X + puck_radius <= tableend
vy = reboundY(vy), vx = reboundX{vx)

JF\J CF‘

I
I
I
I
| X + puck_radius >= tableend
I
I
|

X'==0&&Yy'==0 End (5

Figure 6: The model of the puck.
20

Camera Model

ct >= shutter_time
failed = random(100) < camera_failure_rate,
ct=0 poommooooos N

Capturing % not failed and ,?:UD

ct <= shutter_time “(inCamera(x) __- !
&& snap! i
ct>=0 CX = fint(normal(worl{cham(x), 0.515)),

ctx = cam2world(cx),:
cy = fint(normal(world2cam(y), 0.587)),
cty = cam2world(cy) |

\

<« hot failed and ’

7

\not inCamera(x).”

|
n
|
|
!

AN failed -

S e oo

Figure 7: The model of the camera. 21

Controller Models

Waiting

©

T
1 Xx_new = ctx,

| y_new = cty MalletUnderPuck
!y new =

- 1
e _mallet < target - cam2world(l) __ ,)@ con MR,
/’ \\\
Y snap? { Choose MalletAtPuck \V
@ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, B _ mallet <= target + cam2worid(1) && ___mallet_stop! ldie
3 x_old = target = linearPredict(- mallet >= target - cam2world(1) \t<= freq
v y_old = y_new, x_old, y_old, x_new, y_new, | ! /,A %
: x_new = ctx, tablemallet) ! \\\ MalletOverPuck L ¢
!y hew = cty ! rmallet > target + cam2world{l) mallet_down! -~
P s Q-
\ N e __t>=freg-eps T)
S, 7
. snap? .’

Figure 8: The model of the controllers.

22

- Were simulations the right way to gather data?

- We can run thousands of simulations quickly.

- The model experiments can be evenly distributed.

- Real life play will depend on the person playing with goals targeting the goal.
- The performance scores are easily calculated from the simulation-data.
- We can select the top performers for implementation.

23

Implementing the Controller

Choosing a Platform

- Control over scheduling

- To make a scheduling guarantee more available.
- Processor speed

- Processors that are too fast waste cycles and are more expensive.
- 1/0 ports

- Control of the stepper require certain 1/0 capabilities.
- Limit-buttons also require 1/0.

- Price
- Unnecesarily fast platforms waste money.

- We ended up choosing Arduino as the platform for implementation.

24

Implementing Controllers for Arduino

- The goal is to implement the model faithfully.
- We try to use the model code directly where possible
- Some calculations in UPPAAL are done in C which allows direct transfer.
- Emulating the model transitions as close as possible.
- Find pseudocode that matches transition choices.
- Controllers that are combined in the model, are also a combination in the
code.
- The implementation has to worry about timings that are not in the model.

25

Timing Constraints

- We have to find what timings affect the implementation.
- There are three main environmental constraints
- Maximum speed of the puck is 8% and the playing field length is Tm so a fast
shot takes gs.
- Stepper pulse rate of 325us to cous.
- Camera serial transfer takes around 80us.
- The controller imposes real-time requirements as well.
- Calculation times of the more advanced predictions are high.

26

Scheduling the Tasks

Task Cost Period Deadline Task Cost Period Deadline Part

R 50 >325 50 R 50 >325 50 50
S 1600 none 20000 S 1600 none 20000 <275

Table 1: Task data

- These tasks are not schedulable by a simple cyclic executive scheduler.
- The cost of Sensing is bigger than the period of Reaction.
- The Reaction has a varying period.
- We will need to make some changes to schedule it cyclically:
- The Sensing task could be split into smaller parts and executed one part at a
time.
- The Reaction could run often and only when applicable, but it will require
rounding the acceleration curve. 27

Designing the Scheduler

- We avoid preemption because the serial communication can not be
preempted without redoing the communication
- The data could be lost from the Pixy from a interrupted transfer.
- We use a custom scheduling algorithm.
- It can be defined as a variable-priority scheduler by:

- It requires that we always choose the task with highest priority regardless of
release status.

- P(Reaction) =0

- P(Sensing) = Time until Reaction release — Cost of Sensing

- We can also see it as a fixed-priority scheduler.

- Lower priority tasks will not be scheduled if higher priority tasks will be
released during execution.

- P(Reaction) > P(Sensing)

28

Verifying the Scheduler

Verifying the Scheduler Design

- How can we verify the scheduler design?
- We can create a model of the scheduler and verify it.

- We make a timed automaton representing the scheduler.
- We can then use UPPAAL to verify the model using queries about the
scheduler.

29

Model of the Task

t<=T
and
€ '==

=T
a0,

g . Error

release!

€ ==

t
t
©

WV

Done Running
c'==0 c<=C
and and

t<=T t<=T

Figure 9: The timed automaton of the task 30

Improved Model of the Task

t<=T
and
¢'==0
Ready
)
t>=T O
t>T t>D
t=0, release! release!
c=0, c==Cand o
p=1 p ==Pand c==Cand
ready = true releaseSelf E;g @ =
Y p+=1
- t>T t>D
p =
Done /@#ing
c'==0 : c<=C
release!
and and
c==Cand
t<=T t<=T
p==Pand
and
not releaseSelf
t<=D

ready = false

Figure 10: The timed automaton of the task 31

Model of the Scheduler

Start

AN

reaction_t >= reaction_interval - sensing_cost

WaitAndRunReaction RunnningReaction
run reaction! release reaction?

reaction_t < reaction_interval - sensing_cost

RunSensing RunningSensing
U run_sensing! release sensing?

Figure 11: The timed automaton of the scheduler

32

Improved Model of the Scheduler

Start

rt>=rinterval - s cost \

r_ready run_reaction! /\ release reaction’/
o/ /

WaitAndRunReaction RunnningReaction

r t <r_interval - s_cost

and

not r_ready)\ run_sensing! _—\ release_sensing?
/

&

RunSensing RunningSensing

Figure 12: The timed automaton of the scheduler =

Implementing the Scheduler

- UPPAAL shows that:
- The deadlines are not broken.
- The scheduler will not deadlock.

- To implement the UPPAAL model we work from pseudocode that emulates
the model:
Algorithm 1: The scheduling algorithm

while running do
if R is ready or R Release — C(Sensing) < 0 then
wait until R is released;

execute R;
else
| execute S part;

- This is then turned into real code for the Arduino. "

The Resulting Robot

Improvement results

- Now that the model and implementation has been changed to take our
considerations into account.

- We redo the simulations, which shows a 48.2% =+ 0.5 catch-rate for the
improved model

- Experiments with the implementation was conducted by doing two series of
100 shots.

- The experiments showed a 46% and a 42% block-rate for the improved
implementation.

- The new results are a lot closer, which could suggest that:

- The model fits the the real world better.
- The implementation is more true to the model.

35

Demo

Appendix

Movement Requirements

- Moving the mallet to minimise distance with the mallet (Bangbang control)
- Requires that the mallet moves just as fast as the transverse movement of the
puck (8%)
- Only requires a single known position for the puck.
- Looking at where the puck is and where it is moving to (Linear extrapolation)

- Requires at least two known positions of the puck.
: %th of a second across 70cm requires a speed of 5.6

36

The Top Speed of the Mallet

- The motor requires 400 pulses per rotation of the axle.
- One rotation is 770mm movement of the mallet.
- 85 teeth with a pitch of 2mm.
- We have § of a second for a fast shot.
- 1m of playing field and 8%.
- We can pulse every 325us because of the controller and powersupply.
- This is ~384 steps for a fast shot.

- So we can move 163mm during a fast shot.

. 384
200 * 170mm

37

	Introduction
	Revising the Robot
	Designing a Controller
	The Three Phases
	Finding the Controller
	Modelling the Robot
	Implementing the Controller
	Verifying the Scheduler
	The Resulting Robot
	Demo
	Appendix

