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veere sveert at inkludere virkelighedens brister i
simulerede modeller.
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Chapter 1

Introduction

1.1 Training

Training in different sports has been commonplace throughout time. Often, a
trainer helps a trainee, for example personal trainers for professional athletes,
or club trainers in the case of sports clubs. A human trainer is versatile and
can help with training not only physically, but also mentally, by performance
reasoning and evaluation.

However, human trainers are not always available, and practising alone can in
some cases be a difficult or, in some sports, impossible task. Therefore, for
some of the simpler types of training that focuses on physical repetition, like
a football goalkeeper practising catches, or a tennis player practising return
shots, a robot can potentially be a solution. This type of automated training
technology already exists today, in the form of, as examples, tracking a ball via
computer vision or utilising ball cannons [1].

Simply shooting the ball at one or more pre-planned locations is not always
enough. In some sports, like air hockey, training individual skills might best be
exemplified during training. This is done by playing the game, as it naturally
focuses on continually improving reaction times, precision shooting, and trajec-
tory calculation. This type of practice through playing against a robot forms
the basis of the initial problem:

What are the necessary components of a reactive autonomous
air hockey robot?



1.2 Air hockey

In order to become familiar with the different components and their interactions
within the game, the concept of air hockey and its rules are explored. As such,
this section should give a basic understanding of the rules of air hockey and how
the game progresses.

/)

Figure 1.1: An air hockey board.

Air hockey is a game designed to be played by two players, each utilising a
mallet, to interact with a puck. The puck travels across the board on a low-
friction surface, aided by a constant air current, which allows it to reach high
velocities. The two mallets and the puck are the only objects which are allowed
to touch the surface of the board. The different components can be seen in
Figure 1.1.

The objective of air hockey is to shoot the puck into the opponent’s goal by
using only the mallet. This leads to a game where both players attack and
defend against each other until one player reaches a specified number of goals,
in which case they are declared the winner.



1.2.1 Related Work

The goal of the initial problem statement is to find the necessary components for
an air hockey robot. This report is not the first instance of such a robot being
developed. Projects of this kind have been done before, one other instance of
this being an air hockey robot that allows people to play together over a distance
[2]. This robot is equipped with four puck cannons, that are hidden from the
player. These are meant to emulate an incoming shot made from another table,
while shots the player makes are collected and reloaded by hand. This process
is reciprocated on the other table, effectively allowing to players to play out a
match over great distances.

The robot created for air hockey over a distance gives an insight into some of
the components that may be necessary to create an autonomous robot. One of
these is some sensory equipment needed to detect the puck and its trajectory.
However, as we wish to create an autonomous robot on a single table, some
components can also definitively be excluded. The puck cannons, while a suf-
ficient approach to reflecting a puck, would not be applicable for our robot, as
we want to simulate a real player playing against the training player.



Chapter 2

Problem Analysis

From a human perspective playing air hockey can be considered relatively sim-
ple, especially if more complex matters like strategy are omitted. For instance,
based on the information human eyes gather about the position of the puck, a
response occurs via some sort of prediction as to the end position of the puck.
Finally, with respect to said prediction, a reaction occurs by moving the mallet
to intercept the puck. This simplified process of hitting the puck can be broken
into three processes, namely, sensing, processing, and responding to information.

This chapter will explore said aspects, in order to consider how they can be
utilised to fulfil the initiating problem.

2.1 Sensing

Before the robot even begins to physically interact with the game, it first needs
to be able to gather information about the game and its current state. This
can be done in multiple ways. We discuss a number of information gathering
methods, and weigh the pros and cons of each technology, in order to find one
that fits the problem domain. Additionally, this section also delves into how to
possibly process the information the sensory equipment collects.

2.1.1 Sensing Light

Utilising cameras as digital substitutes, can be an adequate way to mimic hu-
man sensory input. There are multiple types of cameras, that each process
information differently, as can be seen in Figure 2.1.



Figure 2.1: Telham flower shown in respectively visible light, ultraviolet light
and infrared light. (Image by Dave Kennard [3])

Visible-Light Camera is an approach to simulating sight that, through the
use of common cameras, captures light in the visible spectrum. Seeing visible
light can be a great way to capture a specific target, such as a puck. This is
because objects in sports are often painted a distinct colour to be visible and
eye-catching to the human eye. A camera sensor is usually made to emulate the
human eye.

Ultraviolet and Infrared Cameras are two other approaches to sensing
something. Contrary to the visible light camera these two camera types, which
capture light-wavelengths that are invisible to the human eye - these being
ultraviolet and infrared light. This allows for them to not be affected by the
room-lighting, making it useful for dimly lit environments. This also means that
the sensed items could be painted in a paint invisible to humans, which reflects
ultraviolet or infrared, meaning that it only reflects strongly from the desired
objects. This creates greater contrast from the background, while not altering
the appearance of the object [4].

2.1.2 Sensing Distance

Instead of sensing the puck via a camera, it could be detected as a bump on an
otherwise flat surface. To do this, a signal could be sent out with a known speed,
and the time until the reflected signal arrived could then be used to calculate
the distance, as illustrated in Figure 2.2.
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Figure 2.2: A simple reflection based distance sensor. (Diagram by Georg
Wiora [5])

Ultrasonic Sensors are sensors used for measuring distance between the
sensor and nearby objects. It works by sending a pulse of sound, outside the
range of human hearing, and receiving the echo. The distance to nearby objects
are determined by the time between sending a pulse and receiving the echo [6].

Light Detection and Ranging (LiDaR) is a type of technology used to
measure distances between a given object and the LiDaR sensory equipment.
LiDaR technology measures the distance to the object by illuminating it with a
laser and processing the light reflected off of the object [7]. This can be utilised
in various way, from spanning a singular object to mapping information from
pre-defined search area to a 2D array [7].

2.1.3 Processing

After gathering the information another step is needed, namely processing the
gathered information. Essentially, the goal is to derive a small amount of spe-
cific information about the whereabouts of the puck, from a larger amount of
arbitrary information. To illustrate this idea, we consider a simple case where
the goal is to determine the position of the puck from an image.

2.1.3.1 Background Subtraction

Background subtraction refers to a technique used for detecting moving objects
via a static sensor instead of using the motion between the sensor and the
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object. This method separates elements in the foreground from elements in
the background by generating a foreground mask. This mask consists of a
binary image containing the pixels belonging to moving objects, and is separated
from static background. The rationale is that by separating the moving objects
from the static background, the robot can find the desired objects that it needs
to detect [8]. By defining the background, both types of information, being
distance and light, can be simplified. This idea is illustrated in Figure 2.3.

O O

Background Puck Placement Background Subtraction

Figure 2.3: An example of determining the position of the puck through back-
ground subtraction.

As can be seen, this technique allows the system to isolate the puck, and thereby
extrapolate its position. Furthermore, because of the simple nature of the
method it is applicable to both the information gained from light and distance
sensing. It should be noted however, that during an actual game of air hockey
the mallets will also be moving, and therefore complicate the process as they can
not be illustrated in the static background. This means that, adaptations are
necessary to this method to reliably determine the location of the puck, should
this method be chosen as the information gathering technique.

2.2 Prediction

After gathering information about the puck, the robot should be able to consider
its next move. For this reason, a way for the robot to predict the final position
of the puck should be available. Being able to predict the path of an object is
the core aspect necessary to assume the future position of the puck during a
game of air hockey.

Once information about the puck has been gathered, the robot should be able to
calculate where to move. Using this logic, it would be beneficial for the robot to
be able to predict the final position of the puck. Additionally, to know the final
position of the puck, requires knowing where it has been, and where it is going.
If left to its own devices, meaning applying no force except the initial, the puck
follows Newton’s first law', disregarding friction, air resistance etc naturally. In
this case predicting the position of the puck would be simple. However, due

Lan object will move at constant velocity until a force is applied
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to the nature of the board and the game, the puck can alter its trajectory. As
such a naive attempt to predict the predict the final position of the puck using
linear extrapolation will be presented. Furthermore, once the position of the
puck has been extrapolated, a pathing problem is will be presented to illustrate
the importance of an accurate and dynamic prediction method.

2.2.1 Naive Linear Extrapolated Prediction

In order to make predictions about the puck, information about the location of
the puck is necessary. For this reason, we assume to know two positions of the
puck, P; and P». This is to allow for the extrapolation of of the pucks position
from a history. While knowing the given positions it is possible to predict a
naive path connecting the two points as shown in Figure 2.4.

Figure 2.4: A naive attempt to predict the final position of a moving air hockey
puck

Using this method, the proposed position to move the mallet to is determined
to be P¢. However, this prediction fails to consider many physical attributes of
the air hockey board.

2.2.2 Path Problem

An air hockey board can pose impose influences upon the trajectory of the
puck. Specifically, the railing of the board and a player’s hit are both concepts
in which the trajectory of the puck can change suddenly, and why traditional
predictions, as seen in Section 2.2.1, might be inadequate.

13



2.2.2.1 The Railing of the Board

The railings of the board allows the puck to ricochet and change its trajectory.
This means that given two positional states of the puck, the initial position (p;)
and the final position (py), the puck could have taken one of five possible routes,
which can be seen in Figure 2.5. This is assuming a maximum of a single bounce
off the railing, which does not involve the rounded corners.

Figure 2.5: All possible routes which maps from p; to py with a maximum of a
single ricochet.

At this given moment there is no way to deduce which of the five courses the
puck has taken with certainty, meaning the future position of the puck can not
be predicted. The railings provide new routes for the puck to take in order to
reach py and these need to be considered when determining where the mallet
should move to.

We shall later devise methods for deduction of which of the five courses the puck
has taken. This, however, means that we cannot predict the future position of
the puck at current. The railings provide new routes for the puck to take in
order to reach p; and these need to be considered when determining where the
mallet should move to.

2.2.2.2 Player Hits

Unless the movement of the players hand is tracked and analysed with respect
to the trajectory of the puck, predicting the interaction between opponent and
puck is impossible. Naturally, this also implies that a players hit might inval-
idate any predictions made, as these methods could predict a trajectory using
the new puck information, which was changed due to the player hit, and the
outdated puck information, meaning the trajectory prior to being hit by the
player. Therefore the predictions would be incorrect in predicting the course of
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the puck. To illustrate this idea Figure 2.6 shows a scenario where the trajectory
of the puck is predicted, the courses caused by ricocheting have been omitted
to simplify the figure.

- N

; PR

@ 0 J

Figure 2.6: Abrupt change in trajectory caused by a player hitting the puck.

This way of affecting the puck means that the history of the positions of the
puck can become outdated to predict its future positions. Therefore being able
to detect and adapt to this abrupt change in behaviour is necessary, as it will
likely occur multiple times over the course of a game.

2.3 Response

After addressing the path problem of Section 2.2.2 the robot should be left with
a way to asses the final position of the puck, despite the forces which can be
applied to modify the behaviour of the puck during travel. However, in order
play an air hockey game the robot needs to be able to interact with the game
as well, rather than simply theorise. This warrants the need for the robot to
be able to dictate the position of one of the mallets during play. Naturally,
this means the robot should abide by the rules of the game which will be given
in this section. Furthermore, possible ways to interact with the game will be
presented through adding mobility to the mallet. Lastly, platform options will
be considered and compared in order to explore the possibilities available to
fully connect the system together.

2.3.1 Legal Shot

Section 1.2 explored the game of air hockey with the intent of giving readers a
basic understanding of how the game functions. This section will give a more
substantial analyses, with the intent of establishing a set of rules, that any
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potential robot must adhere to. This will be done by analysing the rules in the
United States Air Hockey Association’s official rules list, and creating a list of
legal constraints [9]. The compiled list contains all rules which can influence the
design of a robot.

1. If any part of a player’s hand, arm, body [this also refers to the
body of the robot], or clothes touches the puck, ...

2. A player may play with only one mallet on the playing surface
at a time.

3. The legal bounds of play are the table’s playing surface, the
walls of the rails, the front faces of the goals, the interiors of
the goals, and the player’s mallets. If the puck touches any
other object(s) while it is in play, whether by interference or by
foul (unless the foul is nullified) it is considered out of bounds
and therefore instantly out of play.

4. No mallet may be altered by sloping the playing surface in order
to create an angled striking or defending surface.

5. If interference occurs during a shot which scores and interfer-
ence is called by referee, the point does not count. Interference
is defined as foreign objects on the table or playing surface, ...

Figure 2.7: The United States Air Hockey Associations rules for when a puck
is out of play [9].

As the design of the robot is meant to comply with the above-mentioned rules,
the approaches are limited. For instance, having any part of the body of the
robot make contact with the puck instead of the mallet is prohibited. Similarly,
no objects besides the mallets and the puck are allowed to be in contact with
the playing surface. These constraints are important to consider if it is required
that the robot only performs legal shots.

2.3.2 Moving the Mallet

There exists many approaches to moving objects around via robots. However,
with the size of the air hockey mallet taken into account, in addition to the rules
described in Section 1.2, that amount decreases. In this section, we will present
some possibilities:

Gantry is a common way to move objects around in areas where the space
around the object has to be clear. Container ships and harbours usually move
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shipping containers via a gantry crane. It allows for high precision, strong forces,
and can be extended to move the object in two dimensions. However, moving
the gantry along a second axis requires moving the first axis of the gantry. This
makes the acceleration required to move the gantry at the same speed higher,
which in turn increases the torque required.

For the air hockey board, a mechanism can be made which spans over the top
of the board as illustrated in Figure 2.8. This mechanism has a way to hold the
mallet, and allow it to move. The mechanism itself is then powered by a motor
and a rail to pull the mallet along, or by a hydraulic or pneumatic piston.

'Mallet
AN e

€mmmm e m o>

Centerline

Figure 2.8: An example of a gantry based robot on an air hockey table.

Swinging Boom is a type of pole that rotates around an axle placed in one
end of the pole. Boom arms can be used for object movement in various ways,
most commonly known in boom cranes used for building and the boom of a
sailing ship.

The air hockey mallet can be attached to a boom arm in one end, and the
boom arm attached to the middle of a player side of the board as illustrated in
Figure 2.9. As such, the boom arm is moved in a circle arc on the board. If the
length of the boom arm is half the width of the table, the whole width of the
table can be covered by the boom if it is right on the edge of the board. The
boom is then moved either by rotation at the pivot joint, or by an extendable
piston, attached to some point on the arm.

17
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Figure 2.9: An example of a simple boom bot that moves the puck in a circle
arc.

Robotic Arm is a widely-used method of robotic movement with the use of
arms, often seen in industrial applications [10]. A robotic arm can manipulate
the mallet, either by directly attaching the mallet to the arm, or with a grabbing
attachment. The arm can be attached to the table by means of a separate
platform, fixed to keep the base of the arm still as the arm moves around. The
arm is illustrated in Figure 2.10.

J Goal L
v, A
. ,
. .
<«---|Mallet)----»
A
PN
@ " : \‘
v
Centerline

Figure 2.10: An example of an autonomous bot that uses an arm to guide the
mallet.

Autonomous Mallet is a movement option that, instead of having a robot
pick up and move an object, some objects can be turned into the robots them-
selves. In this case, making the mallet able to move itself, would allow for less
modification of the air hockey board. For instance, this is achieved by adding
wheels to the mallet in a way that does not obstruct the interaction with the
puck, something that is illustrated in 2.11. These wheels are then driven by
electric motors, allowing for quick acceleration and precise control.
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Figure 2.11: An example of some machinery that controls the movement of a
mallet directly from the mallet.

2.3.3 Platform

There are many approaches to creating an autonomous robot that can play
air hockey. This section will describe a few different computational platforms
and their specifications and attempt to weigh pros and cons of the individual
platforms. This will be done by comparing the clock speed, memory capacity,
inclusion of operating system, price of the various platforms, and their I/0O
capabilities.

The clock speed of a given system is an indicator for the computational speed of
the system. A faster clock will allow the processor to execute more instructions
in a given time frame. It should be noted that clock speed is not the only
indicator for the speed of a system, as the underlying hardware architecture can
have greatly varying effect on the efficiency at which instructions are executed.

Memory capacity is an indicator as to the size of programs a system can
execute. More memory allows for more instructions and data to be saved, and
used simultaneously. A computer vision program might need a lot of memory to
store the image frames that are analysed. Different types of memory also come
with their own access speeds, which affect how long the processor may have to
wait for different amounts of data.

Some controllers come with an operating system, and more advanced con-
trollers generally comes with an associated operating system, to act as a re-
source manager. Operating systems usually incorporates their own schedulers,
and as such, causes user programs to run slower and less predictably in some
instances. This could potentially cause the user program to not be able to meet
hard deadlines.

I/O capabilities for a system indicates what kind of input and/or outputs it
can receive and which platform it is available to communicate with.
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The table below gives an overview of the specifications for some of the available
devices that possibly could be used in the project, namely Arduino Uno, Arduino
Mega, the Raspberry Pi 4, and the Lego Mindstorm NXT 2.0 and Lego EV3.

Name Clock Memory (O] I/0 Price
speed
. 26 pins:
Arduino 16 3y kB None 20 digital 1/O ~150 DKK
Uno KHz }
6 analog input
. 70 pins:
Arduino 16 256 .
Mega Ky KB None 54 digital I/O ~260 DKK
16 analog input
Raspberry 1500 1, 2 or Linux- . 339-
Pi4d  KHz, 4GB based 04O 00 prK
Lego 48 25iKB Pr(‘ﬁ;ffry Z ?nogfli: ~1900 DKK
NXT KHz 64 KB based) 3 output (Full kit)
Lego 300 16}?]3 Linux- i fnogfli: 1699 DKK
EV3 KHz 64 MB based 4 output (brick only)

Table 2.1: Table with data and specifications for different computational plat-
forms [11, 12, 13, 14, 15].

As seen in Table 2.1, a Raspberry Pi seems to be a good platform candidate.
It is very fast and has a lot of memory, removing the need for programs to be
compressed, or optimised, to fit in memory. However, because of the accompa-
nying operating system and the associated system processes, user programs can
not fully utilise the CPU. Furthermore, the cache used by the Raspberry Pi,
potentially allows for big differences between average- and worst-case execution
times for programs running on the device.

The same problems are associated with the other platforms running operating
systems, namely the LEGO NXT and EV3. The major difference between the
LEGO devices and the Raspberry Pi is that they cost more to acquire, have less
memory, and lower clock speed. However, the NXT allows for easier fulfilment
of any real-time requirements, due to the simpler processor structure, with no
scheduling, and less caching than the Raspberry Pi and EV3. Furthermore, both
LEGO platforms have the benefits of built-in hardware for controlling motors,
making designing a robot with them simpler.

The Arduino devices are the cheapest of all the platform candidates. However,
they also have the the lowest clock speed and the smallest amounts of memory.
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This potentially makes it difficult to fit an acceptable program, which deals with
everything from motor functions to computer vision, into memory. However,
if the computer vision is off-loaded to another processor, the Arduino would
be sufficient - provided it only has to handle motor functions. Furthermore,
Arduino devices, have the added benefit of only running a singular program on
the CPU, making analysis of worst-case execution times easy.

2.4 Problem Formulation

As has been mentioned in the introduction, the purpose of this project is to
create an autonomous training assistant that can play air hockey. To be able
to play air hockey it must be able to detect, track and hit an air hockey puck.
Each of these elements has been examined this chapter.

After considering and exploring each necessary concept to make a functional air
hockey robot, an outline of what an autonomous air hockey robot entails are
made. However, it is yet to be ascertained whether or not the explored concepts
are sufficient to make a practical and functional robot. For this reason, a deeper
look into the construction of an autonomous air hockey robot is explored.

How can an autonomous air hockey playing robot, based
in the concepts of sensing, prediction, and reaction, be
created, such that it can respond to arbitrary shots?

We will apply the presented concepts to an actual board, and determine whether
or not the resulting solution will satisfy the problem statement.

2.4.1 Problem Scope Limitation

Since the project is limited by time and resources, we shall focus on making a
robot that can block shots autonomously. This limitation does not include the
ability to shoot the puck back and try to score. This can be fulfilled by allowing
the mallet to move in a single dimension, instead of two.
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Chapter 3

Design

3.1 System Requirements

To consider the project a success, we define some requirements for the robot to
fulfil. These requirements are based in the concepts presented in Chapter 2.

1. The robot needs to be able to gather data about the position of the puck.

2. The robot needs to be able to make predictions towards the final position
of the puck, based on the information gathered.

3. The robot needs to be able to process input and respond in a timely
manner.

3.1.1 Performance Criteria

According to the problem statement, the robot must be able to respond reac-
tively to an incoming shot. Therefore, we can lay out a number of performance
questions, with the goal of determining how well the robot responds with respect
to each of these. This allows us to precisely and reliably analyse the performance
measures of each controller.

Block Rate: What is the percentage of shots the robot let through?

Average Distance: How far did the robot travel on average?
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In order to put the performance measures on common ground, we define a
performance function to quantitatively compare the controllers.

Utility = Whyioer - BlockingRate + Waistance - AverageDistance (3.1)

Given we wish to reward a high block rate while punishing a high average travel
distance, the function is based in these concepts. Naturally, we set Wiyoer to 1,
as this is the most desirable measure. Furthermore, because we wish to punish
long travel distances, we assign the average distance travelled a negative weight.
We deem a 0.5% decrease of the block rate, as being equivalent to allowing the
average travel distance of the robot to increase by 1. This leaves us the with an

Waistance Of _0'1005, and finally, the performance formula,

0.005

Utility = BlockingRate — x AverageDistance (3.2)

3.1.2 Dependability Requirements

It is necessary to also analyse how dependable the air hockey robot is, in addition
to how well it fulfils game-critical functionalities. It matters little how well the
robot can defend against a shot, if it only works a fraction of the time, and
also endangers its surroundings. As such, we will evaluate attributes, means of
finding and handling threats, as well as what a threat to the system means. This
analysis will be based in the official dependability requirements set by TC56 of
the International Electrotechnical Commission (IEC)[16].

Attributes Means Threats
Availability™* Fault Avoidance Faults
Reliability Fault Elimination | Errors
Safety* Fault Tolerance Failures
Confidentiality* | Fault Forecasting

Integrity™

Maintainability

Note that criteria marked with an asterisk are of lesser importance to this
project, and will not be analysed in-depth with regards to the project. They
will, however, be given a cursory explanation as to why there were omitted in
their respective segments.
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3.1.2.1 Attributes

Within the scope of this project, attributes are defined as the basis for measuring
the rates and types of failures encountered by the air hockey robot. These
requirements provide a clear and concise ways measuring whether the finished
product fulfils the criteria specified in Section 3.1.

Availability refers to the probability of the air hockey being operational within
an expected time-frame. Due to the nature of this project, this attribute is of
less significance as the air hockey table is a physical service that needs to be
turned on.

Reliability refers to how well the system deals with running, for an arbitrary
amount of time, without encountering any errors. The air hockey robot needs
to be able to run unimpeded in a timespan corresponding to a training session.
As there is no official definition for the timespan of a training session, within
the scope of this project it has been set to 15 minutes. This was believed to be
a reasonable amount of time one needs to practice before a potential break.

Confidentiality is one of two parameters that deal with how secure the air
hockey system is, in regards to outside tampering. Confidentiality specifically
handles security with regards to handling user-information. This requirement
is of little relevance, as the air hockey robot holds no information outside of the
system code.

Safety is a requirement meant to measure the danger-levels the air hockey
robot poses to humans and environments during system-critical failures. As
the air hockey robot is not a safety-critical system, this requirement of little
importance. The reasoning for this is based in the fact that the worst-case
scenario of the air hockey robot, would be for a puck to flip off the table, or for
the robot to turn off because of an error.

Integrity like confidentiality, also helps measure how secure the air hockey
system is. However, where confidentiality deals with how accessible information
is, integrity deals with how easy it is to alter the code used in the air hockey
system. It is worth acknowledging that it is possible for users to interfere with
the system-code of the air hockey robot, but that doing so would render the
product inoperable. As such, users that upload, or change, code are at their
own fault of destroying the air hockey robot.

Maintainability refers to the how easy it is for users to repair and modify the
air hockey robot and accompanying system. The system is designed with the
intention of allowing users to easily repair broken parts.
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3.1.2.2 Means

Means measure how well the air hockey system detects and handles failures
related to erroneous states. This covers everything from examining the notion
of what an error is, how to find them within the system, and ascertaining where
they arise.

Fault Avoidance refers to the how well the system was tested, so as to avoid
faults or mistakes to be implemented during the development. This is done by
the use of peer-programming at regular intervals.

Fault Elimination measures the ability to detect and remove any program
defects during development. This is done via simulation of a mathematical
model within the UPPAAL model-checking software [17, 18].

Fault Tolerance deals with how prepared the air hockey system is, with regards
to dealing with a problem. As such, tolerance measures the safety protocols set
in place, that allow the program to keep running in spite of non-critical failures.
An example of this could be a misalignment of the mallet. Theoretically the
system system could use the camera to ascertain if this is the case, and if not,
trigger a recalibration to ensure that the mallet is realigned.

Fault Forecasting deals with how well the air hockey robot accommodates
unavoidable problems found while the robot is running. This could, for example,
be from camera-noise. This noise could cause the supposed position of the puck
to differ from the actual position on the air hockey rink. One way to deal with
this, could be create a projected path by extrapolating a curve based off of the
rink.

3.1.2.3 Threats

Threats are the problems that the system might encounter throughout execu-
tion. This covers the different levels of threats, being hypothesised, and actual
instances, of errors, as well as the failures they cause within a system.

As an example, one such failure, within the air hockey robot, could be caused by
a misalignment of the mallet. This fault, were it to become a reality, would lead
to the system entering into an erroneous state where it makes wrong assumptions
regarding position when moving the mallet. This in turn, would increase the
risk of a puck passing the mallet and entering the goal-zone, thus failing to
uphold the primary intent of the air hockey robot.
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3.2 Physical Design of the Table

We will now discuss the decisions made regarding the physical design of the air
hockey table based on options presented throughout Chapter 2 and the problem
statement, with all its limitations applied. Furthermore, an overview will be
given as to the final design of the robot. In addition to this, an explanation of
each component will be provided, featuring their role in the system and their
relation to one another.

3.2.1 Physical Design Decisions

Chapter 2 explored what machinery was needed for the air hockey robot to be
able to gather information, process the information, and act based on the infor-
mation was established. While multiple options were explored, a final decision
needs to be made with respect to the problem statement and its limitations.

3.2.1.1 Picking a Detection Method

Provided a camera is placed at an angle and position where the entirety of the
board is visible, the process of detecting the puck, would be relatively simple.
The process would revolve around tracking a single object moving on a static,
unchanging background. It will primarily be based in sensing the contrast in
colour, with the intent of creating a grid that logs the position of the puck. Using
sonar equipment could prove problematic, as sonars have an error-margin that
increases the smaller an object becomes, paired with the fact that the mallet
would be obscured by a human holding it.

However, as the colouration of the rink and puck are already known, it would be
easy to pick up on this contrast. This means that utilising a regular camera to
log the placement of the puck is ideal. The reasoning behind picking a regular
camera over a infrared camera, or a camera that can detect UV-rays is that the
playing field emits cold air to elevate the puck, which can obscure the vision of
the puck should it be reach the temperature level of the rest of the board which
would interfere with the way that an infrared camera works, and would result in
the users hands being considered the warmest thing on the board. Additionally,
coating the puck in UV-emitting material is not feasible because if the coating
gets on the table it will interfere with the camera readings. For these reasons,
the final decision is to utilise a regular camera, specifically a camera called a
PixyCam. As this specific camera not only fulfils the requirement of being able
to gather information, but also because it has the built in functionality of object
detection.
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3.2.1.2 Picking a Platform

Given the nature of the pacing found in air hockey, Arduino Uno has been
deemed a sufficient platform. This is in part due to its lack of associated OS,
which allows for complete control over the processor. This level of control,
allows for the robot to avoid any potential latency-related problems related to
the higher level control of platforms like the Rasperry Pi. While this feature is
naturally shared with the Arduino Mega, the availability of the Arduino Uno
meant that it was chosen in favor of the Arduino Mega.

3.2.1.3 Picking a Movement Method

Given the nature of the options presented to move the mallet about, the gantry
approach has been deemed a reasonable solution. This mechanism is, in relation
to the other methods, a simpler implementation which fulfils the same criteria.
The gantry allows the best means to gaining free access to the limited play-
ing field necessary to simply block shots, as the movement necessary has been
limited to a single dimension.

3.2.2 Overview of the Table

The air hockey table is comprised of a camera (1) functioning as the vision, an
arduino (2) functioning as the brain of the system, and finally a mallet mounted
to a gantry (3), functioning as the hand.
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Figure 3.1: Overview of the Table

3.2.2.1 The Camera

The camera is the first component of the system, it allows the robot to gather
information about its enviroment and therefore also the game state. As previ-
ously mentioned, the camera used is a PixyCam with built in object detection.
This allows it to process the information it has gathered and send only the nec-
essary information, the position of the puck, to the software mounted onto the
platform. Which, in turn, allows the computations to be performed without
any additonal information gathering.

3.2.2.2 The Arduino

The arduino awaits information from the camera, whereafter it analyzes and
processes the information in order to give commands to the mallet. Given the
limitations enforced on the project the commands available are limited, as the
mallet only operates in a single dimension. In order to give reasonable and quick
commands to the mallet based on the information from the camera, the arduino
is required to effectively and efficiently determine the final position of the puck,
such that the mallet is able to respond in time.
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3.2.2.3 The Mallet

The mallet is the mechanically active component. The mallet is limited to only
moving in a single dimension as it only needs to block incoming shots. However,
this is also sufficient in order to fulfil its role in the system. As a component,
the mallet is a simple interface for the Arduino that allows it to act upon the
world.

3.3 Modelling the System

In order to gain a deeper and more thorough understanding of the system pre-
sented in Section 3.2.2, the system is modelled with respect to each component
of the system. This approach is based in the 10 fundamental steps of the
Model-based design methodology described in [19]. However, due to the natu-
ral relationship between our models of computation and the hardware chosen,
as well as the relationship between the control algorithm and hardware, the
method has been altered to fit the needs of this project.

3.3.1 The Camera

In order to sense the puck, a camera which snapshots the board state every
20 milliseconds is mounted directly above the table. It is essential that the
most important part of the playing area will be visible to the camera. The
camera is placed approximately 85 centimetres above the board, this ensures
the camera will monitor everything between the railings on the long side of the
board, without any unnecessary vision outside the field. However, it also means
a loss of ~20 centimetres visibility to the table with respect to goal railings (10
centimetres on each end). We deem this loss of vision acceptable, as players
will usually hold the mallet that far or further from the goal. Additionally, with
the camera closer to the playing surface, image noise is reduced, and object
detection may become easier, as the puck will be occupying more pixels. As
such, with the camera lens at around 85 centimetres above the table, we can
see a sufficient part of the playing area. However, while using the PixyCam
allows the robot to gather information about the outside world, the accuracy
with which it does this can vary due to the imperfections of the equipment or
the structural integrity of the system.
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3.3.1.1 Camera Noise

In order to determine the level of error obtained within the received information
from the camera, the uncertainty of the camera is tested. We conduct a simple
test, where the puck is put directly beneath the camera as a stationary target.
The camera then tries to collect data points relating to the position of the puck.
The test reveals an expectancy of about one to two pixels offset from the original
position.
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Figure 3.2: Visualisation of the puck detection noise

The test, shown in Figure 3.2 reveals an expectancy of about one to two pixels
offset from the original position. This means an uncertainty which affect future
predictions about the trajectory of the puck is present, whenever an image is
processed.

Rather than letting the puck be represented as a single point, it can be more
accurately represented as an area in which at least 50% of the puck will be
represented within, naturally this is assuming the PixyCam attempts to identify
the centre of the puck.

3.3.2 The Puck

In order to control the system in a way that can reliably and predictably interact
with the game, it first needs to be familiar with the air hockey environment it
needs to interact with. Many factors influence how an air hockey puck moves
during the game but the three primary factors for puck movement are collision
with mallets, collision with the rinks railings and the friction from moving on
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the playing surface.

Reducing the friction between the table and the puck is the point of the air-
cushion design of the air hockey table. The friction between the air and the
puck is also taken to be very low because of the pucks flat design. Both these
friction parameters will be ignored for this project, as they are assumed to have
negligible effect on a shot.

The interaction between the mallet and the puck is another factor that will be
ignored, as modelling this complex collision is considered outside the scope of
this project and assumed to have insignificant impact on the controllers perfor-
mance.

When we model the pucks behaviour, consideration will need to be taken with
regards to the fact that many air hockey boards exist, all with different design
materials, structure, and physical properties. Therefore it warrants the need to
create an accurate model of the physical properties of the specific air hockey
board.

3.3.2.1 The Top Speed of the Puck

In order to asses the time available to calculate the trajectory of the puck, as
well as respond correctly, a limit should be set for the robot. In this case, the
limit is given by speed of the puck, the faster it moves the less time the robot
will have to respond. For this reason, it should be assessed how fast a human
player can shoot the puck, where this speed will function as the baseline for
response time. Naturally, if it can be assured that the robot can respond to the
fastest shot, it suggests it can respond to any slower shot. To determine this
top speed it was a simple case of looking at the fastest recorded shots, using
the data where a player was attempting to hit the puck as fast as possible. The
data is presented in the Figure 3.3.
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Figure 3.3: Measured speed of shots on an air hockey table with standard
derivation imposed.

Here, each letter represents a single shot, while ¥ denotes the average shot speed
of all shots, while the arrows denote the sample standard deviation. According
to the data, the highest achieved speed is about 7.6 m/s. Naturally, this includes
uncertainties such as the strength of a player. Because humans vary in strength,
it should be possible to create shots that are faster than the found highest speed.
In order to compensate for this fact and the natural error margin in measuring,
as well as human strength utilisation, the maximum expected speed the system
should respond to, is set to 8m/s. It should be mentioned that other human
players might be able to shoot the puck even faster, however for the purpose of
this project 8 m/s is deemed sufficient as an upper limit.

3.3.2.2 Railing-Rebounds

To measure the behaviour between the puck and the air hockey rink railing,
a simple experiment is conducted. A series of shots are taken aiming at an
arbitrary point on the edge of the board, which results in a number of various
velocities and angles going into the collision. The collisions are recorded at ~120
frames per second and manually analysed frame by frame. This gives the input-
and output speed as well as angle of incidence and reflection. One possible
source of noise in the data is human error arising from using the program, as
placement of tracking points had to be done manually. The data is analysed to
answer a number of questions:
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o Is the collision close to perfectly elastic?

o Is the angle of incidence and angle of reflection proportionally related?

Elasticity we look at the velocity before and after the collision. to determine
if there are any significant losses in the pucks velocity, from hitting the rink and
if there are any losses does is depend on the angel of approach.

15 N

# of shots
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Figure 3.4: The distribution of the shots over how much of the velocity was
retained after rebounding (The coefficient of restitution).

From Figure 3.4, it can be observed that loss occurs, and looking at the data
shows between 7% and 70% loss of velocity after rebounding. The collision is
therefore far from perfectly elastic . The span is enough to justify investigate
other parameters that influences the loss of velocity.

Angle We hypothesise that the velocity perpendicular to the rail (v,) is af-
fected by the rebound and that the velocity parallel to the rail (v, ) is unaffected.
The data from the shots is analysed, and by looking at the Pearson correlation
of all the different variables of the shot, some of the strongest correlations are
found to be between v} and vJ at 0.937 and between v}, and v at 0.960 [Ta-
ble A.1 in Appendix A]. indicates a relation F : (R x R) — (R x R), however
relations from v to vy and from vz to vy shows low correlation, and relations
between the ratio of v;, and v} and v or vg also have low correlations. There-
fore we derive two functions: reboundX (vi) = v2 and reboundY(v;) = vy by
regressing a linear function to fit the measured data.
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Figure 3.5: The v, and v, data points and 2 linear regressions for them.

As can be seen within Figure 3.5, by regressing the formula f(x) = a * z to
the two relations, and with a loss of ~33% from v% to v2, our hypothesis about
an almost unchanged parallel velocity does not hold. This could be due to
friction and velocity transferred to angular momentum. Our hypothesis about
less loss in the perpendicular velocity does hold however. There is a roughly
60% reduction in the parallel velocity after a rebound.

3.3.3 The Mallet

As the mallet is the only way for the robot to interact with the game, an in-
depth understanding of its movement options is required. Naturally, limiting the
system to only blocking incoming shots simplifies this model strongly. However,
knowing the general speed and options of the mallet is still essential to determine
whether or not the system will be able to respond in time.

3.3.3.1 Mallet Movement

The mallet has limited movement options, due to its restriction to a single
dimension. This creates an environment where the only options the mallet has
is to await instructions to either move upwards or downwards.

34



| ® |

N %

L]

Figure 3.6: The movement options available for the mallet.

While the movement options of the mallet, shown within Figure 3.6, help show
whether or not it is possible to reach the final position of the puck, another
aspect to consider is the speed of the mallet. Taking this into account enables
calculations on whether we can reach the final position in time or not, rather
than simply judging by physical obstacles.

3.3.3.2 Mallet Speed

The mallet is moved with a stepper motor, which works by being stepped for-
ward or backward at a certain interval. The specific UPPAAL implementation
of the mallet can be seen in Figure 3.7.
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Figure 3.7: The timed-hybrid automata controlling the mallet

Aside from speed, the mallet also takes into account which direction it is moving.
This is so that, if the mallet is moving in one direction towards the puck and
suddenly has to move the other direction, the motor will first decelerate before
reversing direction.

In the model, the mallet accelerates by use of a coeffecient set between 1 and -1.
1 would be maximum acceleration, while -1 would be maximum deceleration.
As needed, the coeffecient can then be set between these values, until a desired
speed is reached. At the desired speed, the coeffecient can then be set to 0, and
the mallet will maintain speed.

The max speed of the mallet is dependent on the minimum step period, along
with the number of teeth on the pulley attached to the motor. There are 85
teeth, the pitch of the teeth is known to be 2mm, and the motor is known to
take 200 steps per revolution, or rotate 1,8 degrees per step. The minimum step
period was found experimentally to be 500us. The max speed is then calculated
to 1.4272

3.4 Controllers

Now that a thorough understanding of the system has been achieved, we can
model and assess different methods to control the robot by using modelling
software such as UPPAAL where we can input the models with different pa-
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rameters such as mallet speed and puck speed. We start off by introducing a
simple controller, namely the patrolling controller. The goal of this is to provide
a baseline controller which can be modified. The controller will be described
and simulated, after which the weaknesses will be identified with respect to the
performance criteria presented in Section 3.1.1. In these simulations the speed
of the puck will always be the top speed, described in Section 3.3.2.1. The re-
sults from this simulation forms the basis for a new controller which attempts
to improve a specific aspect of the simulated controller. Similarly, the new con-
troller will once again be described, simulated and expanded upon. This process
is iteratively applied to the controllers.

3.4.1 Patrolling Controller

The patrolling controller simply moves upwards until it hits the top railing with
no option to stop. Once it hits the top, it reverses direction and moves to the
bottom. Once it hits the bottom it reverses direction again and repeats. The
logic behind this simple controller can be seen illustrated in Section 3.4.1.

mallet <= tablemax

Start MovingUp
© VDE_‘”_ELUEQ

/

mallet >= tablemax - eps
mallet_down!

mallet <= tablemin + eps
mallet_up!

——————

,—————

/
N s
N s

(@]
MovingDown
mallet >= tablemin

Figure 3.8: The patrolling controller as a hybrid time automaton

We expect this controller to catch a minimal number of pucks, while featuring a
high travel distance due to its inability to halt its movement. The results from
the simulations can be seen in Table 3.1.
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Controller Block %  Average Distance Performance

Patrolling 12.9 29.885 £ 7.882 -0.020

Table 3.1: Simulation results for the patrolling controller

As expected, the moving mallet showcases a minimal block rate and a maximal
travel distance, resulting in a low performance rating. In order to attempt
to increase the performance, we introduce a controller which has the added
functionality of moving the mallet with respect to the position of the puck.

3.4.2 Two-step Controller

A two-step, or Bang Bang, controller is a simple feedback controller that can
switch between two actions, in this case move up or move down with respect
to a simple prediction, this is illustrated in Figure 3.9. The two-step controller
functions by utilising a logical expression, which assists in discerning which
action to perform.
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Figure 3.9: The two-step controller as a hybrid time automaton

Due to the logical expression determining its behaviour, the prediction of the
two-step controller needs only a single image to determine a supposed position.
This process is handled multiple times, as the controller repeatedly tries to
predict the final position of the puck. With the goal being to block an incoming
air hockey shot, the natural logical expression would be to evaluate whether or
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not the position of the puck is above or below the current position of the mallet.
This leads to a simple prediction where it is assumed the puck only moves in
one dimension.

(]

Figure 3.10: A prediction made by the two-step controller.

As can be seen in Figure 3.10, the controller assumes only simple trajectories
perpendicular to the mallet axis. Therefore, it is able to make a simple predic-
tion entirely on the height difference between the puck and the mallet. Then,
once new information about the puck is gained, a new prediction will be made.
Given that the two-step controller never considers the possibility of the puck
ricocheting off of the railing, or has a positional history log which a shot can
invalidate, it disregards the path problem by disregarding the possible origin
methods of the path problem. This naturally means that the two-step con-
troller instructs the mallet to ’chase’ the puck, which suggests it might be weak
to non-perpendicular shots if the mallet cannot move fast enough. However, as
the two-step controller possess the ability to make predictions about the final
position of the puck, and move the mallet with respect to this prediction, we
expect the two-step controller to feature a higher block rate than what was
seen from the patrolling controller. However, as it still shares the weakness of
not being able to halt its movement the average travel distance is expected to
remain similar. The results from the simulations can be seen in Table 3.2.

Controller Block %  Average Distance Performance

Two-step  47.8 26.055 + 7.914 0.348

Table 3.2: Simulation results for the two-step controller

The two-step controller features a higher block rate, but at the cost of an average
travel distance similar to the patrolling controller. Furthermore, it features a
performance score of 0.348 which is an increase from the previous controller.
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However, it still has a high movement measure. This is due to its inability to
stop moving, meaning while it, unlike the patrolling controller, does move with
respect to a prediction, it still shares the necessity to constantly move even while
at the correct position. In the case of a completely straight shot, the mallet will
naturally move away from the correct position, only to move back after receiving
information on the puck again. Furthermore, should the shot ricochet off the
railing, it means the mallet will chase the puck all the way to the railing, only
to move back to a position the mallet most likely passed, or could have gotten
to faster by moving there directly.

3.4.3 Three-Step Controller

The two-step controller has no way of lowering its distance travelled due to its
inability to halt movement. To reduce the necessary movement, we present the
three-step controller. This controller incorporates the same set of actions as
the two-step controller, but with an added third action. As can be seen within
Figure 3.11, the addition of a third action allows for a new mallet state which
halts movement if the puck and mallet positions align on the same y-coordinate.
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Figure 3.11: The three-step controller as a hybrid time automaton

Essentially, the three-step controller utilises the same prediction model as the
two-step controller, meaning it naturally inherits the same prediction weaknesses
as the two-step controller. However, a check is also made to determine whether
or not the current position is correct, with respect to the prediction, and if it is,
the mallet does not move. This added action can be seen in Figure 3.12 together
with its prediction model.
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Figure 3.12: The prediction model and actions available to the three-step con-
troller

That is, until it has gained information that the puck is either above or below the
mallet, where it will once again mimic the behaviour of the two-step controller
until it determines it is in the correct position. As the two- and three-step
controllers feature the same prediction model, it is expected that their block
rates will be similar. However, with the added functionality to halt movement
present in the three-step controller the average travel distance should lessen.
The results from the simulations can be seen in Table 3.3.

Controller  Block %  Average Distance Performance

Three-step 47.9 24.720 £ 8.478 0.355

Table 3.3: Simulation results for the three-step controller

The three-step controller follows many of the same decisions as the two-step
controller, thus giving it a similar performance. However, while the controller
is able to have the mallet stop moving, the cases in which it will do this, is
limited. This is because the puck usually moves in both dimensions available.
Therefore while the mallet may stand in the correct position based on its current
knowledge of the puck position, it is likely the puck will be moving to a different
y-coordinate, which warrants movement from the mallet. So even with the
added functionality of stopping the mallet, its usage is too rare because of the
inaccuracy of the predictions.

3.4.4 Naive Linear Extrapolation Controller

If the controller is given a small amount of memory, the unreliability of the
predictions of the three-step controller can be reduced, as the puck position
data can be saved for a few frames. With this, a controller can be extended to
perform linear extrapolation, as seen featured in Figure 3.13.
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Figure 3.13: The NLEC as a hybrid time automaton

We categorise these types of controllers as linear extrapolation controllers (LEC).
Using a LEC means the position of the puck crossing the axis of the mallet can
be found as the puck has shown to follow a linear trajectory, see Section 3.3.2.
It should be noted however, that the naive LEC (NLEC) naively expects the
puck to not have bounced, and to not bounce in the future. This results in a
simple LEC which disregards the railing of the board.
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Figure 3.14: NLEC prediction based on two points.
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The prediction model, shown in Figure 3.14, considers the possibility of the puck
moving in two dimensions, the accuracy of the predictions are expected to be
higher than the previously mentioned controllers, which in turn should improve
the block rate. The results from the simulations can be seen in Table 3.4.

Controller Block %  Average Distance Performance

NLEC 59.1 20.888 £+ 7.733 0.487

Table 3.4: Simulation results for the NLEC

We observe an 9.2% increase in the block rate compared to the three-step con-
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troller. However, the NLEC is still prone to make erroneous predictions due to
ricocheting. This means the predicted position can be incorrect, due to the puck
having bounced between the images, and/or because the puck will bounce in the
future, which the NLEC will predict as being placed outside of the playing field.
Furthermore, as the NLEC has a history of the puck positions, it means it is
susceptible to shots from the player which can invalidate the history. However,
as the linear extrapolation is repeatedly applied, an invalidated history can be
compensated for at the expense of the reaction time available.

3.4.5 Rebounding Linear Extrapolation Controller

As an increase in the reliability of the controller illustrated an increase in perfor-
mance, we attempt to improve the prediction model of the NLEC. As mentioned
before, the NLEC is unable to consider the influence of the railings. The re-
bounding linear extrapolation controller (RLEC) is a LEC which considers the
effect the railing can have on the trajectory of the puck in the future.
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Figure 3.15: The RLEC as a hybrid time automaton

Figure 3.15 shows the logical process the RLEC undergoes in order to react
appropriately according to its prediction.

Figure 3.16: RLEC prediction based on two points.
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Where the NLEC assumes no bounces will happen in the future, the RLEC will
alter the predicted trajectory of the puck in accordance with the possible effects
the railings can infer as shown in Figure 3.16. The altered trajectory is with
respect to the modelled puck behaviour presented in Section 3.3.2.

Naturally, this means the RLEC is expected to predict the final position of
the puck with higher accuracy than the NLEC, as it considers an additional
attribute of the board. Therefore, the RLEC should feature a higher block
rate than the NLEC. Furthermore, as the RLEC should be more reliable in its
predictions, the travel distance is also expected to lessen as less unnecessary
movement is done due to faulty predictions. The results from the simulations
can be seen in Table 3.5.

Controller Block %  Average Distance Performance

RLEC 65.6 19.866 + 7.318 0.557

Table 3.5: Simulation results for the RLEC

As expected, the RLEC improves on the average travel distance, and the block
rate. The RLEC handles the problem with the NLEC by taking rebounds into
account and should be able to calculate a path from the two initial pictures.
However, while the RLEC considers the possibility of the puck bouncing in the
future, it still does not consider the possibility that the puck bounces prior
to receiving the second picture. Naturally, as no changes where made to the
positional log of the puck, the NLEC may also reduce its reaction time in order
to compensate for a invalid log.

3.4.6 Bi Rebounding Linear Extrapolation Controller

In a similar fashion to how the RLEC expanded on the NLEC, the bi rebounding
linear extrapolation controller (Bi-RLEC) expands on the RLEC by considering
the possibility of the puck bouncing between the images received. This is done
by increasing the memory capacity to include an additional image, which should
assist in determining the correct trajectory of the puck. As the path problem
highlighted, see Section 2.2.2, there exists a multitude of ways the puck can be
mapped from one position to another with the help of the railings. However, a
lot of these possible trajectories can be disregarded due to the speed limitations
of the puck, as well as the rate the PixyCam captures information. Essentially,
given the 20ms window where the PixyCam does not capture the board, and
the speed limitation of the puck of 8 m/s, specific railings may be impossible to
hit before the PixyCam captures an image again. Furthermore, the goal railings
can be disregarded as any abrupt changes in the x-axis of the puck does not
warrant a change in the position of the mallet. This simplification allows the
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Bi-RLEC to evaluate whether or not the puck has ricocheted between any of
the received images. This is done by applying linear extrapolation twice, once
where the first image received is left out of the extrapolation, and once where
the third image is left out of the extrapolation. This process can be seen in
Figure 3.17.

Waiting

! snap?

(Ss = ctx,y3 = cty
T snap?

1 x2 =x3,y2 =y3,

Y x3 =ctx,y3 = ¢ MalletUnderPuck
Ct} Ty 'I‘BU%LS@IQ%‘:,@[“,Z,‘NPI@,(D,,,,)@,,,,mg\lej_wj\

| , .
! snap? { Choose MalletAtPuck N
@, _____________ o @ ________________ ,? _______ ,@_ _ mallet <= target + cam2world(1) && ___mallet_stop!_ _>¢ldle
X1=X2,yI =y2; target = =0 mallet >= target - cam2world(1) t<=freg
Y x2=x3,y2=y3, BiReboundLinearExtrapofationPredict( 1 TN
X3 =ctx,y3 =cty x1y1, x2,y2, X3,y3, ! . MalletOverPuck % !
! tablemallet) N \E@Ue}z!ajqe,t,tga"zzvzqud,(ll,,,,@,,m}ﬂeadgwn‘/ i

Figure 3.17: UPPAAL Model of the Bi-RLEC

Here the target is calculated through applying two linear extrapolations like this,
together with expecting a maximum of a single bounce due to the limitations of
speed and the camera capture rate, means there are three possible outcomes.

1. Both linear extrapolations successfully connect all puck positions. In this
case, the puck did not ricochet off the railing at any point.

2. Only the linear extrapolation between the first and second puck positions
successfully connect all puck positions. In this case, the puck ricocheted
between image two and three.

3. Only the linear extrapolation between the third and second puck positions
successfully connect all puck positions. In this case, the puck ricocheted
between image one and two.

We disregard the possibility of both linear extrapolations failing as this would
requires the puck to have hit the railings twice, which given the assumptions
will not be considered.
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Figure 3.18: An illustration of the Bi-RLEC attempting to determine whether
or not the puck hit the railing

Figure 3.18 showcases a scenario where the Bi-RLEC correctly determines the
trajectory of the puck in spite of the influence of the railing. The Bi-RLEC notes
that linearly extrapolating between the first and second puck positions, results
in a trajectory which does not connect with the third puck position. On the
contrary, linearly extrapolating between the third and second puck positions,
results in a trajectory connecting all three puck positions. Therefore, the correct
trajectory must be the lines created by the puck positions given in the third
and second image. It should be noted however, that due to the noise from the
camera, it is very likely that extrapolations will fail align all puck positions,
in cases where they otherwise would have in case of no noise from the camera.
In order to compensate for this, we simply select the extrapolation where the
omitted puck position has the lowest distance to the drawn trajectory, if the
distances are equal the trajectory is predicted from the latest puck positions
used, as shown in Figure 3.19.
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Figure 3.19: Bi-RLEC prediction based on three points

The Bi-RLEC attempts to predict the final position of the puck with even
greater precision than the aforementioned LECs. The path can now be predicted
more reliably regardless of when, where, and if the puck ricochet off the railing.
Essentially, this nullifies the potential effects the railings can introduce to the
puck. For this reason, we expect the Bi-RLEC to have the lowest travel distance
of the presented controllers, as it should theoretically never fail to move to the
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correct position once it starts operating. In addition to this, the block rate is
expected to increase as well due to the increased reliability of the predictions,
assuming the mallet has enough response time to move. The results from the
simulations can be seen in Table 3.6

Controller Block %  Average Distance Performance

Bi-RLEC  60.4 17.137 £ 7.308 0.518

Table 3.6: Simulation results for the Bi-RLEC

As expected, the Bi-RLEC travels the least distance on average of the presented
controllers. However, this increased precision comes at the price of now requiring
three images before making a move, meaning the mallet will idle longer. The
lowered block rate from the RLEC is likely due to this increased idle time.
Essentially, the mallet is unable to catch the puck in time, due to the speed
limitations of the mallet, despite following a correct prediction.

3.4.7 Combining Controllers

The presented controllers can be categorised by the number of pictures they
require to begin operating the mallet. As such, the two-step and three-step
controllers are mono-image controllers, the LECs are bi-image controllers, with
the exception of the Bi-RLEC which is the only showcased tri-image controller.
With these categories, combinations can be made across the controllers. For
instance, while the Bi-RLEC awaits the necessary three images, it will already
operate the mallet with the first image received using the three-step controller.
After receiving the second image, it opens up for the possibility of using the
RLEC. Finally, after receiving the third, and remaining images, the Bi-RLEC
can be utilised. This simply means that whenever a new image is received, the
controller switches, and therefore all controllers still have their individual logic.
An example of combining controllers in this manner can be seen in Figure A.3.

The combination of controllers allow for the creation of controllers which become
more precise the more information is given, whilst operating as soon as possible.
This would for instance mean, that the imprecision of the prediction of the
three-step controller would be nullified by the prediction of the Bi-RLEC once
enough information has been gathered. Naturally, it also means some of the
weaknesses will be inherited. For instance, the Bi-RLEC is able to reliably asses
the trajectory of the puck with regards to the railings, allowing it to perform
very efficiently should the initial prediction remain true. This is because, if
the initial prediction of the Bi-RLEC is correct, and all subsequent predictions
are correct, the mallet is required to move only once. However, if combined
with the two-step controller it is certain to become more inefficient due to the
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need for constant movement from the two-step controller. Furthermore, in case
an earlier controller made an incorrect puck prediction, it could result in the
mallet having to move further, with respect to prediction of the Bi-RLEC, as
the predictions have different levels of reliability.

The specific combined controllers are the following: Three-step into NLEC,
three-step into RLEC, RLEC into Bi-RLEC, and three-step into RLEC into
Bi-RLEC. As aforementioned, while some of the strength of these controllers
cover for the weaknesses of others, they will weaknesses which were not present
before. For this reason, we test the performance of the combined controllers
to see how they fair up against their individual counterparts. The simulation
results from these can be seen in Table 3.7.

Controller Block %  Average Distance Performance
Three-step -RLEC —Bi-RLEC 67.4 21.645 + 7.674 0.566
RLEC —Bi-RLEC 65.7 19.063 + 7.644 0.562
Three-step —=RLEC 67.2 22.441 £ 7.357 0.560
Three-step -NLEC 61.9 23.458 £+ 7.789 0.502

Table 3.7: Simulation results for the combination controllers

Some controllers perform better than their individual counterparts, while some
perform worse. The three-step into RLEC into Bi-RLEC has the best per-
formance of the combined controllers. The controllers that did not improve
performance may have been unable to overcome the faults of their parts.

3.4.8 Picking a Controller

The presented controllers have had their performance rated, following the for-
mula presented in Section 3.1.1. We will now compare all the controllers to each
other, given their performance data.
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Controller Block %  Average Distance Performance

Three-step -RLEC —Bi-RLEC 67.4 21.645 + 7.674 0.566
RLEC —Bi-RLEC 65.7 19.063 £ 7.644 0.562
Three-step -RLEC 67.2 22.441 4+ 7.357 0.560
RLEC 65.6 19.866 £ 7.318 0.557
Bi-RLEC 60.4 17.137 £ 7.308 0.518
Three-step —=NLEC 61.9 23.458 £ 7.789 0.502
NLEC 59.1 20.888 + 7.733 0.487
Three-step 47.9 24.720 £ 8.478 0.355
Two-step 47.8 26.055 + 7.914 0.348
Patrolling 12.9 29.885 £ 7.882 -0.020

Table 3.8: Controller performance

As can be seen Table 3.8, the patrolling controller score the lowest. Similarly,
the two- and three-step controllers score lower than the other controllers, due
to their simplistic predictions. The rest of the controllers show incremental im-
provement, though some individual controllers perform better than controllers
where they are combined with others. Given the results, the chosen controllers
that will be used are RLEC into Bi-RLEC, three-step into RLEC, and three-step
into RLEC into Bi-RLEC.

3.5 Robustness Analysis

As we now have an understanding of the PixyCam, mallet and accompanying
models, a robustness analysis is be conducted to ascertain how certain changes
might affect the performance of the air hockey robot.

3.5.1 Modifying the Camera Rate

The Original PixyCam has a set speed with which it takes pictures. In the
interest of seeing how a faster camera effects the overall performance, an ex-
periment is conducted. This experiment measures the performance of the three
controllers that were picked in Section 3.4.8. This experiment will test how
a camera operating at twice the speed of the used PixyCam (100 frames per
second) will affect the performance of each controller.
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Controller Block Rate (%) Distance (cm) Performance

Three-step —RLEC 69 24.53 +7.24 0.57
RLEC —BI-RLEC 68 22.98 £ 7.39 0.57
Three Step »RLEC —BI-RLEC 69 24.22 +7.38 0.57

Table 3.9: Controller performance with a camera two times faster than the
PixyCam

As seen in Table 3.9, an improved camera might increase the efficiency of the
controllers. Block-rate will increase roughly two to three percentage points,
depending on the controller. However, the increased camera speed, will also
result in an increase in the distance travelled by the mallet. The reasoning for
this is based in the way distance is measured in the model. As it is designed
to include noise, the controller will keep moving around the approximate area
of the pucks assumed position. This increases the distance as it never reaches
the destined coordinate, but rather circles in orbit around it, thus remaining
ever in motion. However, this projected increase is not be enough to be deemed
disruptive to the performance of the controllers.
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Figure 3.20: Performance score for a slower camera

It is also interesting to see what would happen if the robot utilised a slower
camera than the current PixyCam. To test this, an experiment where the camera
takes pictures at half rate is also simulated.
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Controller Block Rate (%) Distance (cm) Performance

Three-step —RLEC 61 20.79 £ 7.13 0.51
RLEC —BI-RLEC 58 16.32 £ 7.34 0.50
Three Step = RLEC —BI-RLEC 61 19.97 £7.47 0.51

Table 3.10: Controller performance with a camera half the speed of the PixyCam

As can be seen in the table above Table 3.10, with a camera that is 50% slower
at handling the pictures the average performance decreases with around 5-6
percentage points, it is also interesting that the amount of travel decreased with
about 2 cm on average. This is probably because the mallet can only hit shoots
closer to it.

3.5.2 Modifying the Camera Faultiness

It is assumed that the PixyCams image detection algorithm provides a coor-
dinate for every frame, but it can be interesting to see how the controllers
performances change if there is a loss of frames. An experiment is conducted
where differing amounts of the pictures processed by the camera does not result
in a coordinate. The results can be seen in Figure 3.21, and point to an almost
linear correlation between the amount of lost coordinates and the performances
of the controllers.
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Figure 3.21: Faulty camera reports
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The interesting thing is that the combined controllers that start with the three-
step controller normally perform better, but in these simulations, they start
performing worse. We consider the three-step controllers normal affect on dis-
tance travelled, but if we look at Figure 3.22, we can see that the distance
are close to the original simulations. Furthermore, Figure 3.22 shows the same
change in catch-rate as in performance.
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Figure 3.22: The catch rate and distance travelled with lossy cameras

We show a situation in Figure 3.23 that might be the reason for this. If an initial
position showing the puck as being above the mallet is received, the three-step
controller will begin moving as it is a mono-image controller, while a LEC will
wait for the second picture. As can be seen in the diagram, the puck will end up
at the bottom, and the three-step will start out moving the mallet away from
the final position of the puck, thus decreasing the chance that the controller
will be able to catch it. This may not be the sole reason for the difference in
catch-rate, but it might be one explanation.

3.5.3 Modifying the Mallet Speed

In addition to the camera, another important part of the robot is the mallet.
Alterations to the mallet might change the pacing of the robot drastically.

The primary component of the air hockey robot is the stepper motor that moves
the mallet back and forth. The pacing of the robot dictates how well the robot
deals with pucks at varying speeds. As such, an experiment will be conducted,
that tests the efficacy of the robot at twice, and thrice the speed, as well as at
half speed.
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Figure 3.23: The three-step controllers initial reaction with missed positions
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Figure 3.24: A graph showing the performance of the three selected controllers.

As can be seen in Figure 3.24, increasing the mallet speed from the normal
~1,5 m/s will seemingly increase the performance significantly, up to a cap.
As mallet speed approaches four m/s and beyond, the specific performance
increase per speed increase decreases. Similarly, decreasing the speed decreases
the performance, as expected.
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3.5.4 Modifying the Puck Speed

As was originally deliberated on in Section 3.3.2.1, the maximal speed achievable
was eight metres per second. However, it is possible that the puck might reach
faster speeds if a stronger individual were to play. The same can be said about
the reverse, being a puck moving at lower speeds. As such, an experiment that
analyses controller efficiency in situations with varying puck speeds.
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Figure 3.25: The the correlation between the speed of the puck and the perfor-
mance of the selected controllers.

As can be seen in Figure 3.25 the performance decreases as puck speed increases,
and increases as puck speed decreases. However, it is of much interest to note
that performance decreases significantly from 3m/s to 2m/s. This is most likely
because of the noise added in the model. In essence, as two ’clouds’ of uncer-
tainty move closer together, the variance between the two actual points becomes
greater.
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Figure 3.26: Two pairs of uncertainty clouds with reported points.

As a result of this, the predicted mallet-axis crossing of the puck may vary
wildly over the course of the shot. Given the low speed, these variances would
also cause the mallet to move many times, leading to a lower performance score
because of the movement penalty.
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Chapter 4

Implementation

4.1 Controlling the Motor

Controlling the stepper motor is integral to creating a functioning air hockey
machine. The way the stepper is controlled is by pulsing the motor to move it
a step in a direction. The interval between the pulses then controls the speed
of the motor as a step is always the same size. The motor in the project can be
stepped at a rate of once per 300pus, which results in a speed of 1.42m/s of the
mallet.

4.2 Controlling the Camera

Controlling the camera is vital, as it is the key component with regards to
gathering information about the position. The air hockey robot employs a
PixyCam One and its built-in library to snapshot the air hockey playing area.
Additionally, the PixyCam utilises built-in object recognition functionality that
is calibrated to a colour to keep track of the puck. When the PixyCam takes
a photo, it takes note of pre-defined colour objects that sticks out from the
background. It turns them into blocks that correspond to a set of coordinates.
Said coordinates can then be used to calculate the trajectory of the puck. This in
turn, enables the mallet to start reactively moving to a position that corresponds
to the same latitude as where it assumes the puck will be. This process is
repeatedly conducted as new snapshots are registered. The information that
is gathered by the PixyCam is transferred to the Arduino board via a serial
peripheral interface (SPI).
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The PixyCam is calibrated to take a picture every 20 milliseconds and perform
its own object detection on it. The blocks are transferred to the Arduino board
with a data rate of 1 Mbit/s. With a block size of 2 bytes, the transfer time is
approximately 16 ps per block.

It is worth noting that the PixyCam has limitations both by design and wear.
While the PixyCam have a built-in object recognition functionality, it is of
simple design, and has trouble pinpointing advanced shapes. This coupled with
a lack of contrast or colour, means that objects that need to be detected, has to
conform to some semblance of basic shape, in addition to being of a bright colour
contrasting with the background [20]. Additionally, the specific PixyCam used,
shows wear from use, making certain parts of the snapshot process inaccurate.
However, the degree of inaccuracy is not enough to deem it unusable.

4.3 Scheduling

Now that we have a list of execution costs for the different parts of the imple-
mentation, we present an overview of how it all fits together. As can be seen in
Table 4.1, there is an immediate problem to a simple scheduling of these parts,
namely that all three controllers have a cost that can exceed the minimum pe-
riods between stepping the motor. We can solve this by splitting the controllers
up into parts that will fit in-between the stepping, though this will require that
a form of context switching is implemented.

Task Execution time Period Preemptable?
Step motor 44 >300 No
Get camera data 228 20000 No
Three Step —RLEC leq 20000 Yes
RLEC —BI-RLEC leq 20000 Yes
Three Step = RLEC —BI-RLEC leq 20000 Yes

Table 4.1: Table of tasks and their related times. All time measurements are in
ns

A consideration we should make is whether or not snapping pictures with the
camera and predicting the trajectory are considered seperate tasks. Since the
individual outputs of the all three chosen predictors will not change unless the
input puck positions change, The predictors do not have periods. As such,
it does not make sense to run any of the predictors multiple times between
recieving pictures, as this would simply return the same output. Furthermore,
it is an advantage to run them as soon as possible after recieving a picture, so we
can minimise the delay between sensing and reaction. Therefore, the scheduler
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is created with just two tasks specified, the Sensing task and the Reaction
task. The Sensing task is comprised of acquiring a position from the camera,
and predicting where the puck will end up. The Reaction task is comprised of
processing the current position of the mallet, and determining the direction to
move with respect to the prediction made. Naturally, this implies the Reaction
task has control over the stepper motor.

The Sensing task is split up into parts with costs less than 400us. This means
we can now simplify Table 4.1 as illustrated in Table 4.2.

Task Name Period (T) Cost (C) Max part cost (PC)

Sensing <20000 <16 000 400
Reaction > 300 507 50ps

Table 4.2: A simpler overview of the tasks

Consider the following example where we use a static period of 500us for the
Reaction task. During a 20 000ps cycle, we wish to run the Sensing task once,
and execute the Reaction task 40 times. If we start at time 0 and execute the
Reaction task, 50ps will have passed. Which means 450yps is left. This is enough
time for one of the Sensing parts so we execute it, which leaves us with 50ps.
50ps is not enough for any task, so we wait until the next Reaction task. This
pattern will repeat until there is no more Sensing parts to execute before the
next Sensing period. This pattern can be seen in Figure 4.1.

300 I 600 I 900 I 1200 I 1500

Reaction ] D D D D
e e e |

Sensing

Figure 4.1: Gantt chart showing the fast pulses with the sensing task split up

We can also consider the situation when the mallet is moving slower and our
Reaction period increases, namely during acceleration and deacceleration. If
the reaction period is 1000ps, we will start out by running first the Reaction
task and then one part of the Sensing task, similar to the process depicted in
Figure 4.1. However, this time we are left with 550p1s, so we have time to execute
another part of the Sensing task. When we finish executing the other part, we
are left with 100ps, which is not enough time to execute anything, so we wait
for the next Reaction task. This pattern can be seen below in Figure 4.2.
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Figure 4.2: Gantt chart showing timing of slow pulses with multiple sense task
parts per reaction task

With these two examples, we can work out a simple algorithm, see Algorithm
1, to schedule the tasks. We can constantly see if there is time to run a part of
the Sensing task. If there is time to run it, we do it and check again. Otherwise
we just wait for the next Reaction task and run it.

while running do

t < the current time in microseconds;

if ¢ + PCsensinq S nextrcaction then

‘ execute Sensing task part;

else
wait while t < next,cqction;
nextreaction < t + Lreaction;
execute Reaction task;

end

end
Algorithm 1: The scheduling algorithm.

This algorithm seems to work, at least in the two examples we went through
earlier. To make sure no situations come up that would make this scheduler
perform a schedule that does not obey the two task periods, we should verify it.

We can now build a timed automaton that represents the scheduler and the
tasks and use UPPAAL [21] as a tool to verify that our scheduler will always
be able to schedule the tasks.
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Figure 4.3: Timed automaton of the scheduler.
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Figure 4.4: Timed automaton of the tasks.

By processing the two automatons seen in Figures 4.3 and 4.4 UPPAAL can
tell us that the tasks will always be run within their period in this system, so
no periods are violated.
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Chapter 5

Evaluation

5.1 Verification

In order to ensure the controllers function as simulated, we conduct a simple
experiment to test the validity of the models. The initial testing shows the three-
step — RLEC only achieves a catch-rate of around 24%, which is a significant
reduction compared to the 67.2% that the simulations showed in Section 3.4.8.
The robot also shows unexpected behaviour including, not responding to in-
coming shots or moving seemingly randomly. We expect a perfectly modelled
system to behave identically in a simulated environment and the real world,
and in extension of this, a closely modelled system behaves similarly to the
real world. For this reason, we explore the correlations of the individual compo-
nents of the system to their respective models to see whether or not they behave
identically.

5.1.1 Camera

While the camera has been observed to send the position of the puck conjointly
with noise, see Section 3.3.1.1, further testing into the imperfections of the
camera is done. Namely, additional noise analysis and image acquisition rate.

5.1.1.1 Camera Noise Analysis

In order to gain a deeper understanding of the noise the PixyCam presents, we
shoot the puck, by hand, along a trajectory where we deem the vy of the puck to
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be minimal. It is expected that the camera will be able to identify the positions
of the puck, such that they can all be connected by a single straight line.

- ————

o e e e e e L L o e mm = e S e e
- - - == - -

Figure 5.1: A conceptual illustration of how noise affects trajectory predictions.

As illustrated in Figure 5.1, we observe the correct trajectory, the black line,
is not fully overlapping with any of the received trajectories, the red lines.
Furthermore, as none of the received sets of puck positions can be connected
via the use of a single straight line, as the noise from the PixyCam changes the
linear extrapolation result depending on which of the puck positions are used.

5.1.1.2 Camera Acquisition Rate

Another possible faulty aspect of the camera is the rate with which we are
expecting to receive data. Currently, the model of the camera describes the
camera as sending the current puck position every 20 ms, Section 3.3.1.

In order to test whether or not this is the case, the puck is shot at approximately
5m/s along a simple trajectory observing all the information received from the
camera.
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Figure 5.2: The captured positions of a puck in a rebound shot

As showcased in Figure 5.2, the camera sends faulty information not accounted
for in the model. The PixyCam is unable to detect the puck positions during
the initial phase of the course of the puck, contrary to the positions after hitting
the sides of the rink which seem to register more clearly.

5.1.2 Puck

As the puck is not susceptible to the same kinds of hardware issues found in
Section 5.1.1. It is still possible for the puck to behave differently than the
modelled behaviour. In order to test this correlation, simple puck trajectories
are introduced at different areas of the field and explored. We expect that the
puck follows a perfectly linear trajectory from the initial position, P;, to the final
position, Py, Figure 5.3 shows the expected puck position P, and trajectory, the
solid line, compared to the observed, the dashed line.
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Figure 5.3: A conceptual illustration of how the edge of the railings affect the
trajectory of the puck.

According to the test, the curve tendency of the puck increases as the puck
approaches the railings. This means, that predicting the puck to move linearly
fails, as the puck will attempt to approach the center line with an increasing
rate, the closer to the railing the puck is travelling, due to the curving effect the
edges of the board have on the trajectory of the puck.

5.1.3 Mallet

As the mallet is a mechanical component of the system, it may be subject to
imperfections which affect the real world performance of the controllers. In
order to test the correlation between the model and the real world, a simple
test is presented which assists in assessing whether or not the mallet behaves
correctly. The mallet is required to move a set distance with a specified speed
a number of times, after which it resets to its original position and repeats the
process. The goals of this test are to determine, whether or not the mallet moves
consistently with the specified speed, and how well it considers its own position
with respect to a target.
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Figure 5.4: A conceptual illustration of how the acceleration and deceleration
affect the position of the mallet.

R

The observed behaviour of the mallet indicates that it can maintain a specified
speed well, as described in the model. However, over time the mallet becomes
more and more inaccurate, to the point of being so off-position, that a calculated
position which would block a shot is not the actual position the mallet ends up
at. This issue is also illustrated in Figure 5.4, where the dashed mallet is the
off-position the mallet eventually reaches when operating the test.

5.2 Discussion

Given the system simulates a human’s way of playing air hockey, it naturally
fulfils the system requirements presented in Section 3.1. However, while the
robot is able to gather information about the position of the puck, the quality
with which it does this is limited. While the effect the noise of the camera
introduces to a stationary puck is correctly modelled, the effect the noise has on
a predicted trajectory was left to be explored in Section 5.1.1. The results from
this analysis indicates, that greater countermeasures against camera noise might
need to be installed into the model for better performance. In addition to this,
according to the camera model, the PixyCam will deliver information about
the position of the puck every 20ms. However, as revealed in Section 5.1.1,
the camera may fail to detect the puck at times, and in turn, fail to deliver
the necessary information. According to the puck model in Section 3.3.2, the
puck loses speed after bouncing off the railing. This implies that the PixyCam
struggles to identify the puck during high speeds, but as the puck hits the railing
and loses some of its initial speed it becomes easier to detect. This also explains
why the detection issue is only present during the first half of the course of the
puck. Similarly, the model of the puck is also deemed incomplete, as further
testing in Section 5.1.2 reveals that the puck has a tendency to move towards
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the middle of the board while travelling along the edges. This could be due
to the air pump not being evenly powerful to get the same airflow throughout
the entire table, resulting in the middle of the board having a stronger airflow
compared to the edges of the rink.

As mentioned in Section 5.1.3, the mallet desynchronises its expected position
and actual position, which implies an updating error between the expected posi-
tion of the mallet and the actual position of the mallet. This desynchronisation,
means the some of the dependability requirements, presented in Section 3.1.2,
are lower than initially expected. Specifically, the reliability suffers from the
desynchronisation, as the longer the game progresses the more disconnected the
relationship between the current and expected positions of the mallet will be.
In addition to this, the errors from the camera and the prediction of the puck,
makes it difficult for the robot to reliably play on the expected level. In spite of
this, the maintainability of the system is good. In the prototype built in wood,
all components are reachable, and all components can easily be disassembled
from the overall machine. Conceivably, a user could change the program run-
ning on the Arduino, motor controller, motor, or any combination of these to
their liking. The rest of the requirements have been deemed less important, but
are either fulfilled or not relevant.

5.3 Conclusion

The motivation behind this project was to create an embedded system. The
approach to this was to anchor the problem in a problem related to a specific
domain, and a concrete problem:

How can an autonomous air hockey playing robot, based
in the concepts of sensing, prediction, and reaction, be
created, such that it can respond to arbitrary shots?

In order to accommodate this, a system that acts as a defence against a human
player was created. This piece of software is centered around linear extrapolating
controllers(LEC), and placed on embedded hardware. LEC’s were sufficiently
efficient with regards to embedded hardware, because they can function inside
a system with a lot of activity. The time restraints in the scheduled order,
showcased in Section 4.3, leave little time for calculation and LEC controllers,
being divisible into smaller pieces, allow for a fragmented execution that fits the
scheduled order.

However, based off of comparisons made between simulated model and the air
hockey robot, it can be concluded that the camera has a big impact on linear
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extrapolating controllers. The simulated model, the results of which were shown
in Section 3.4.8, had vastly better results than the air hockey table experiments
shown in Section 5.1. Based off of the information shown in Section 5.1.1,
it can be assumed that the real robot has periods of time where it lacks the
information necessary to make reliable predictions with regards to puck position.
These imperfections were never included in the model, as the design phase of
the project, assumed that selected hardware was perfect. To make sufficiently
accurate predictions about the system performance, inaccuracies like the camera
has to be included in the model.

5.4 Future Work

While the final iteration of the air hockey robot, fulfilled the requirements set
for it, there is still room for improvement. There are multiple factors that could
weigh in on performance increases, and this section will focus on analysing said
aspects with the purpose of gauging how much possible improvements could
affect the efficacy of the air hockey robot.

5.4.1 Utilising a Better Camera

As was originally hinted at in Section 3.3.1.1, and further deliberated on in
Section 3.5.1, the PixyCam 1 showed signs of ageing, both limiting its features
from a technical point of view, but also due to wear from repeated use. This
was further deliberated on in section Section 3.5.1 where experimentation into
whether a newer model of camera could improve upon the performance of the
air hockey robot.

The newer camera, in this case, could be the new PixyCam 2 that has all the
functionalities of the previous model, in addition to being able to capture at
60 frames per second. As mentioned briefly in Section 3.5.1 the newer camera,
could allow a decrease in shutter-speed, improving upon the overall speed of
the air hockey by minimising the time it takes to take pictures. Additionally,
a camera like the PixyCam 2 could allow for better object recognition - partly
because the pictures taken are of a higher resolution, but also because of the
increased amount of recognisable colours.

Furthermore, the PixyCam 2 also has built-in line-tracking [22], which could
help in prediction of the trajectory of the puck.
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5.4.2 Improving Upon the Model

As was touched upon in Section 5.3, there was a lack of realism when the air
hockey robot was modelled in UPPAAL. These inconsistencies made the simu-
lations run at a rate of efficiency that was not representative of the reality it was
made to model. As such, there are certain changes that must be implemented
in future models, for the model to produce accurate results.

One such change would be to add a measure that accounts for the time it takes to
calculate rebound angles and the like. In the current iteration of the air hockey
model, it assumes that as soon as a picture is taken, the path prediction will be
available. This results in an inaccurate representation of controller efficiency, as
it removes the calculation time from slower controllers.

Another thing that should be implemented for the air hockey robot is to account
for the fact that the table is uneven. One way to do this could be to add a
coefficient of friction that accounts takes the unevenness of the playing field
into account, when calculating the path of the puck

5.4.3 Implementing Other Controllers

With regards to implementing models and simulating controllers, the program
that, in this project, was used for testing timed automata was UPPAAL. Aside
from model verification, UPPAAL is capable of teaching machine learning mod-
els [23]. Given the limited scope of control needed, and the clear goal for the mal-
let, a machine-learning-powered controller could be created and implemented,
provided that the hardware to run such a controller was available. In addi-
tion, testing the difference in performance between a Q-learning and M-learning
controller would also bring insight into whether further development would be
beneficial.

This machine-learning controller could, if given the right parameters, likely be
made to adapt itself to the specific table being used in this project. This could
potentially lead to an increase in performance, due to the machine-learning
algorithm adapting to factors like lightning and unevenness on the playing field,
to name a few.
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Appendix A

Restitution Influence

Angle Restitution

Velocity Restitution
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Figure A.1: The influence
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of 6; and v; on the 6, and v,.
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Table A.1: Pearson correlations between the different variables of the angled
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Figure A.3: UPPAAL Model for a combined controller
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