
Gamification of Mobile
OpenStreetMap Contributions

Developing MapTogether

Rasmus Nørgaard Fjeldsø
Thomas Møller Grosen

Rasmus Hartvig
Sebastian Hjorth Hyberts

Phillip Bengtson Jørgensen
Simon Svendsgaard Nielsen

Aalborg University

Aalborg University

Department of Computer Science

Selma Lagerløfs Vej 300

Phone: +45 99 40 99 40

Fax: +45 99 40 97 98

http://www.cs.aau.dk

Title:

Gamification of Mobile OpenStreetMap
Contributions

Topic:

Mobility

Project period:

01-02-2021 - 27-05-2021

Project group:

SW812F21

Authors:

Rasmus Nørgaard Fjeldsø
Thomas Møller Grosen
Rasmus Hartvig
Sebastian Hjorth Hyberts
Phillip Bengtson Jørgensen
Simon Svendsgaard Nielsen

Supervisor:

Daniele Dell’Aglio

Page count: 68

Abstract:

In this project, we analyse the map data
of OpenStreetMap and the issues that
arise when the quality of the data relies
solely on volunteers and charity. Fur-
thermore, we analyse gamification the-
ory and how it can motivate different
types of players to perform a task they
otherwise would not. We use this analy-
sis to design MapTogether, a mobile ap-
plication that utilises gamification and
social features to motivate users to con-
tribute with useful map data to Open-
StreetMap. From the design, we im-
plement a prototype of MapTogether.
To support the necessary features, we
design and implement a MapTogether
server with an API to persist data be-
tween clients and an OpenStreetMap
API wrapper to download map data
and upload contributions. In both of
these APIs, we keep security in mind by
verifying and authenticating the clients’
OpenStreetMap credentials. The pro-
totype has in its current state features
such as user profiles, followers, leader-
boards and maintenance quests to con-
tribute data to OpenStreetMap.

The content of this report is publicly available, but publication (with bibliography) has to be in agreement

with the authors.

i

Contents

Contents ii

1 Introduction 1

2 Problem Analysis 3
2.1 Types of Contributions . 3

2.1.1 Notes . 3
2.1.2 Tagging . 3
2.1.3 Adding Points of Interest . 4
2.1.4 Mapping . 4

2.2 OpenStreetMap Contributors . 4
2.2.1 Amateurs . 4
2.2.2 Professionals . 4
2.2.3 Corporations . 4
2.2.4 Governments . 5
2.2.5 Bad Actors . 5

2.3 Accuracy and Precision . 5
2.4 Error Types in OpenStreetMap . 7
2.5 Existing Solutions . 7

2.5.1 StreetComplete . 8
2.5.2 Urbanopoly . 9

2.6 Gamification . 9
2.6.1 Game Elements . 9
2.6.2 Reason for doing gamification . 9
2.6.3 User Types . 10

2.7 Problem Statement . 11

3 Design 13
3.1 Audience . 13
3.2 Requirements . 16
3.3 Game Design . 18

3.3.1 Achievements and Player Profiles . 20
3.3.2 Time-based Leaderboards and Brackets 21
3.3.3 Socialising and Gamified Mapping Parties 21
3.3.4 Gamification of Surveying . 22

3.4 Features . 23
3.5 Object-Oriented Design . 25

3.5.1 Problem Domain . 26
3.5.2 Application Domain . 28

3.6 User Interface Design . 30
3.6.1 Main Screen . 31
3.6.2 Social Screen . 33
3.6.3 Login Screen . 36

ii

Contents Aalborg University

3.6.4 UI Flow . 36

4 Implementation 39
4.1 Architecture . 40
4.2 Subsystems and Components . 41

4.2.1 Graphical User Interface . 41
4.2.2 Map-Data . 42
4.2.3 Quest-Finder . 42
4.2.4 Tile-Renderer . 42
4.2.5 Social-Information Handler . 43
4.2.6 Login-Manager . 43
4.2.7 Leaderboard-Calculator . 43
4.2.8 Quest-Solver . 44

4.3 Connecting Devices . 44
4.4 Log-In Handler . 46
4.5 Database and Server . 48

4.5.1 Database and Server Design . 49
4.5.2 Database and Server Implementation 51

4.6 OpenStreetMap API Wrapper . 54
4.6.1 Endpoints . 54

4.7 Client . 57
4.7.1 Futures . 57
4.7.2 Provider . 57
4.7.3 Quest System . 58

5 Evaluation 61
5.1 Performance Testing . 61
5.2 Discussion . 62

5.2.1 Fulfilment of Requirements . 62
5.2.2 Work Process . 63

5.3 Conclusion . 64
5.4 Future Works . 65

5.4.1 Verification Quests . 65
5.4.2 Tile Renderer . 65
5.4.3 Activity Motivation Experiment . 65

Bibliography 67

iii

Chapter 1

Introduction

Location-based services often require reliable and up to date map data, whether it is simple
information such as road networks or the opening hours of shops. OpenStreetMap1 pro-
vides completely free community-driven map data. The idea behind OpenStreetMap is that
anyone can freely use the data. Companies such as Google also provides map data through
Google Maps API. However, the uses are limited as specified by their terms of service and
are also not free for commercial use. OpenStreetMap is thus quite attractive for developers
and is used by services such as Snapchats SnapMap2.

The data provided by OpenStreetMap is driven by a community of volunteers, and organ-
ised by the (non-profit) OpenStreetMap Foundation3. Much like Wikipedia, anyone can
contribute with new data. This has both advantages and implications. Because it is easy to
change, the users can quickly update the data to include the most recent information. The
data, however, is also subject to the unpredictability of the laymen population. Because of
the origin and the incentives (or lack thereof) of contributing with new data, we can imagine
at least two issues; missing data, because nobody in the vicinity has an incentive to add it
and incorrect data, either because of malicious intent or by human error.

In the following chapter, we analyse the quality of OpenStreetMap and problems related to
the incentives of voluntarily contributing.

Who contributes to OpenStreetMap? Are there any specific challenges
preventing people from contributing? Are there any existing solutions to
increase OpenStreetMap contributions and contributorship?

After the the analysis we specify requirements and design the core game loops and interface
of MapTogether. We implement different components that combined work together to form
a slice of the complete featureset.

1OpenStreetMap www.openstreetmap.org
2https://map.snapchat.com/about
3OSM Foundation https://wiki.osmfoundation.org/wiki/Main_Page

1

www.openstreetmap.org
https://wiki.osmfoundation.org/wiki/Main_Page

Chapter 2

Problem Analysis

In this chapter we start from the initial problem in Chapter 1 and analyse OpenStreetMap,
as well as the incentives of contributing to such a project. We also identify sources of errors
and how gamification can motivate people. The analysis ends with a problem statement
that will carry us into the design phase.

2.1 Types of Contributions

In this section, we will define a few types of types of contributions to OpenStreetMap. The
data in OpenStreetMap consists of nodes, ways and relations. A node is used to represent
an object that is described by a singular point on the map. Examples of nodes are single
trees, benches or a bus stop. A way is a list of nodes and typically represents things such as
buildings and roads. Relations are collections of nodes and ways. A relation can represent
things such as bus routes or complex buildings that can only be drawn as multipolygons.

There are different ways one can contribute to OpenStreetMap. This section categorises the
different types of edits any contributor can make. The categories of changes have different
levels of user involvement.

2.1.1 Notes

Contributors can add notes to OpenStreetMap. Notes are text comments specified on a
specific coordinate, pointing out errors or other information. Notes can be read by other
contributors and help others to refine the map data. Placing notes is the simplest way of
adding information.

2.1.2 Tagging

Much information in OpenStreetMap data is in the form of points of interests (POI) rep-
resented by a node. A point of interest can, for example, be a tree, shop or a bus stop.
Tags refer to information about points of interest. Points of interest can have several tags
with information, such as the number of floors of a building or the material of a bench.
We say that tagging happens when a contributor adds or changes tags of points of interest.
Adding/changing tags to an already specified point of interest is an easy way to contribute
to OpenStreetMap; it can be seen as answering simple questions like “what are the opening
hours of this shop?”. Mapping or adding new points of interest often involves tagging.

3

Group SW716F20 2. Problem Analysis

2.1.3 Adding Points of Interest

Adding new points of interest is more complicated than tagging since contributors have
to add new data represented by a single node with an accurate coordinate. In addition,
adding points of interest requires contributors to find features that are not, but should be,
represented in OpenStreetMap. They then have to select the specific location of the node.

2.1.4 Mapping

Mapping refers to adding roads, paths and buildings through a series of nodes. The difference
between “mapping” and “adding points of interest” is that mapping adds new data features
represented by multiple nodes. Common for paths and buildings is that they are represented
as a list of connected nodes. Contributors who want to add new buildings or roads must
accurately specify all the nodes on the map. When a contributor adds a new road or
building, it is easy to add a few tags; thus mapping often involves tagging. Mapping is
the most complicated type of editing because it requires contributors to be accurate about
the nodes. Luckily, the placement of paths and building does not change as often as all
information specified in tags.

2.2 OpenStreetMap Contributors

OpenStreetMap is, like Wikipedia, open for anyone to edit and change for better or worse.
This allows for anyone to improve the data for the benefit of everyone, but it also means
that there is the possibility of vandalism. Giving everyone the ability to edit the data does
not mean that all users do. OpenStreetMap and Wikipedia both roughly follow the 90/9/1
rule of thumb, that is, 90% of users never edit, 9% of users edit sporadically and 1% of users
regularly edit [1]. For OpenStreetMap the top 1.4% of editors are responsible for 90% of
contributions and 1 to 13% of users will have contributed data in any given month [2].

2.2.1 Amateurs

A large portion of people who edit OpenStreetMap only edits a few times and are usually
beginners when it comes to mapping. The average person probably does not have any
experience mapping, nor any specialised equipment for it.

2.2.2 Professionals

Professionals, as defined by Yang et al. [3], are able to use the most complete and advanced
mapping software like JOSM, as well as contribute a large quantity of high-quality data
and regularly edit. For countries like France, UK and Germany, most OpenStreetMap data
comes from professionals, which is just a fulfilment of the 90/9/1 rule. Professionals can
reasonably be expected to be able to perform all contribution types described in Section 2.1.

2.2.3 Corporations

There are also multiple corporations that contribute to OpenStreetMap, including some of
the largest IT companies such as Amazon and Apple [2]. The corporations have different
interests in the map-data. However, what all of them have in common is that they have
a large percentage of the total contributions in their location. However, corporations also
contribute outside their immediate vicinity. They also increase the total contributions, an
example of this is a five-fold increase in edits regarding already existing road networks [2].

0JSOM https://josm.openstreetmap.de/

4

https://josm.openstreetmap.de/

2.3. Accuracy and Precision Aalborg University

2.2.4 Governments

The Danish government (among others) also contributes to OpenStreetMap by supplying
aerial imagery. The Agency for Data Supply and Efficiency provide image coverage of the
Danish acreage [4]. These images are captured every year in the spring, and later the same
year released for usage by OpenStreetMap, or any other service, and they have a resolution
of 10 cm2 which means that each pixel corresponds to 10 cm x 10 cm area [5]. In order to
get a perspective on this resolution, the finest resolution commercial satellites can capture,
as of April 2019, is a resolution of 30cm [6]. This resolution means that the imagery of
Denmark has a high level of details, which improves the overall quality of OpenStreetMap.

2.2.5 Bad Actors

Some people abuse the fact that anyone can contribute to OpenStreetMap. They modify
or create information that somehow benefits them. This vandalism peaked at the launch of
the game Pokemon Go, which uses information from OpenStreetMap in order to determine
where different Pokemon should be placed [7]. Most of the changes happen within a 5 km
radius of the vandal, but most do not sustain these vandalism activities. The non-vandalising
part of the community fixes 65% of the errors introduced within a day [7].

2.3 Accuracy and Precision

Given that OpenStreetMap gathers their data from user reports, errors and inaccuracies
in the map are bound to occur, whether, through a user error or malicious intent. When
talking about errors in geospatial data, there are typically two factors that are taken into
consideration, accuracy and precision.

We define accuracy as the degree of closeness to which the information on the map matches
the values in the real world. Therefore, accuracy is a measure of the quality of the data and
the number of errors contained in a certain data set.

We define precision as how the description of data is. Precise data may be inaccurate, as it
could be exactly described but inaccurately gathered. This can happen if, for example, the
mapper made a mistake or the data was recorded wrongly in the database.

Fig. 2.1 shows examples of data that has been gathered with varying degrees of accuracy
and precision, as well as how a lack of either affects the quality of the data set.

In a real-world example, a precise but inaccurate measurement might show a road on the
map as it looks in the real world, however, shifted 20 meters away from its actual position.
Conversely, data gathered accurately but without precision would have the position of the
road be closer to where it is in real life, but not guarantee the road’s form or shape.

The degree of accuracy required to make a correction is highly dependant on existing data
for a given area. For example, in areas where there are no previous contributions, even an
inaccurate trace of a road that a contributor adds without the use of GPS or other sources
is an improvement [9]. Likewise, in dense areas such as a city, many users refine the data
over time, and users should be cautious when adding new data.

Ideally, a mapping system gathers data both precisely and accurately. However, according
to the OpenStreetMap wiki[9], there can be multiple reasons for data to be inaccurate or
imprecise, with some being rather obvious and others more challenging to notice.

5

Group SW716F20 2. Problem Analysis

Figure 2.1: Examples of accuracy and precision, the crosshair represents the true values of
each entity with the dots representing measured/recorded values [8]

GPS data is one of the significant sources for OpenStreetMap. If the user allows it, data
can be collected about a geographical area as a person travels through it with a GPS.
Generally, this provides relatively accurate data as to the location of the point of interest;
however, it also has several errors. GPS is optimal when the receiver has a clear view of
the sky in all directions, which is not always the case, and repeatable errors can occur. If a
contributor goes out to record map data of a specific area, they cannot be sure that their
data is accurate. Even if the contributor records a path of them starting and stopping in
the exact same location and then repeat the route the next week with the same equipment,
they may be several meters off the original path simply due to the nature of GPS. Because
of this, it is also generally a bad idea to correct ’errors’ in other people’s GPS traces that do
not disagree significantly with that of another user. There may also be specific areas where
a satellite consistently is obscured by a building or a similar object. This can then cause
consistent inaccuracies on specific points in the map data [10].

Aerial imagery and satellite pictures can be used in a process called georectification, which
combines the image set into a single image that is consistent with the ground. Often this is
both an accurate and precise method for gathering data, especially in built-up areas where
edges can easily be matched, and there are likely to be already surveyed reference points. In
many regions, aerial imagery is considered as being nearly completely accurate, and using
aerial imagery is often both more accessible and more accurate than relying on repeated
GPS measurements. One exception is if the mapper has access to special hardware, which
allows for a better accuracy using GPS, but this is rarely a viable solution for the typical
mapper. The problem with aerial imagery is that the mapping done based on the imagery,
can only be as recent and valid as the imagery provided.

Most of these errors are mainly prevalent in areas with little to no prior data. In such cases,
it is still preferable to have map data with inaccuracies as opposed to having no data at all.
Meanwhile, in dense areas such as large cities, many users are already present and errors
have a good chance of being corrected by other mappers, once they discover them.

6

2.4. Error Types in OpenStreetMap Aalborg University

2.4 Error Types in OpenStreetMap

Errors in OpenStreetMap are classified as situations where the map differs from the real
world. The differences are caused either by faulty reporting or a lack of information regarding
a specific area. This section presents some common errors in OpenStreetMap.

One apparent error when using OpenStreetMap is the lack of data pertaining to shops and
points of interest, especially in small towns. Unless a shop or location is reported manually
by a user, it does not appear on OpenStreetMap. This means that many points are not
recorded on OpenStreetMap as they are in the real world. An example of this can be seen
below in Figures 2.2 and 2.3 where the shops located at Adelgade in the city Skanderborg
are shown both in OpenStreetMap and the proprietary competitor Google Maps.

Figure 2.2: Adelgade in Google Maps Figure 2.3: Adelgade in OpenStreetMap

Looking at Figures 2.2 and 2.3, it becomes apparent that Google Maps has vastly more
information readily available pertaining to shops and their locations when compared to
OpenStreetMap.

While the disparity in the figures seems extreme, this appears to primarily be a problem
in small cities and towns, as mapping is generally more complete and descriptive in more
populated areas.

The age of the data may be another source of error. When the data sources become outdated,
some, or a large part, of the information may become stale as to how a location now looks
in the real world. For example, if a road is permanently closed or redirected or a shop in
town goes bankrupt, the data pertaining to the road or shop becomes invalid and incorrect.
These types of errors are usually detected by others in dense areas with lots of contributors.
However, in smaller, rural areas where user updates are less frequent, these errors can
potentially exist for a long time.

2.5 Existing Solutions

In Section 2.1, we investigated different types of contribution. We discovered that only a
few of the users contribute to improving the OpenStreetMap data, for which we can find two
reasons. Firstly, it could be that the users are not aware that OpenStreetMap is open and

7

Group SW716F20 2. Problem Analysis

that they can contribute. Secondly, even when the users are aware that they can contribute,
it might be too difficult or uninteresting to contribute. There exist multiple systems which
aim at making it easier and more enjoyable for different users to contribute. Most of these
systems use gamification to varying degrees.

Gamification is the use of video game elements in non-gaming systems. Video game elements
can improve the participation and motivation of people in carrying out tasks that they do
not otherwise find interesting to perform. These could, for example, be people who usually
do not contribute to OpenStreetMap because they find it boring or unrewarding [11].

Some of the game mechanics that can be used to gamify mundane tasks are point systems,
levels, leaderboards, and positive feedback [11].

2.5.1 StreetComplete

One example of a system using gamification is StreetComplete [12]. StreetComplete is an
app that finds and shows incomplete data near the user and displays it as tasks on a map on
the screen. The tasks can be questions about road names or the opening hours of local shops.
Fig. 2.4 shows the map with tasks in the StreetComplete application and Fig. 2.5 shows and
open task after tapping on it. One of the game mechanics used in StreetComplete is points.
Thus, a counter constantly shows how many contributions the user has made, even though it
is somewhat unrelated to the mapping itself. Another game mechanic is the use of positive
feedback in terms of badges. As an example, a user receives a badge after completing 30
tasks.

StreetComplete has more than ten thousand downloads from the Google Play store and a
rating of 4.8/5 which indicates the application is used and liked by the users.

On the 4th of March 2021, version 31.0 of StreetComplete was released, with a social feature
called StreetComplete teams, which aims at allowing people to map better while spending
time with other people. Previously when two friends map together, they would both see
the same tasks. With StreetComplete teams, the tasks are split evenly between all team
members to reduce duplicate changes and increase the total number of changes.

Figure 2.4: The StreetComplete map screen
Figure 2.5: Selected quest for determining
the surface of a path

8

2.6. Gamification Aalborg University

2.5.2 Urbanopoly

Another example is Urbanopoly [13]. Urbanopoly is more like an actual game, as it is a
“game with a purpose”. The players are playing the game because they want to, due to
the game being entertaining and not because they wanted an easy way to contribute to
OpenStreetMap. Urbanopoly was developed as part of a research project within Human
Computation, which is when humans perform necessary tasks for computers, tasks which
the computers are unable to perform themselves.

There are two metrics to verify the effectiveness of games with a purpose. These are through-
put, defined as the average number of problem instances solved per human hour, and average
life play (ALP), defined as the average time each player dedicates to the game. Focusing on
this ALP is essential as this is the player base, and without any players, the throughput is
irrelevant.

2.6 Gamification

As mentioned in Section 2.5, gamification is the process of using video game elements outside
the context of games. In this section, we delve further into some of the design considerations
undertaken when developing tools through the means of gamification.

2.6.1 Game Elements

We present the Bohyun Kims MDA framework[14], in order to understand how gamification
works. This framework encompasses the three design processes, mechanics, dynamics and
aesthetics, where each of these processes produces different game elements. The game me-
chanics are references to different behaviour and mechanisms that a player can be directly
impacted by [14]. Leaderboards, quests and other specific elements belong to this category.
The aesthetics fall under the category of creating goals and making the games entertaining
when playing them, such as fellowship – making the game social and encourage communica-
tion – and discovery – making the game such that it takes the player into uncharted territory
[14]. The game dynamics support the game aesthetics, for instance having win conditions
that are easier to reach through team play or increasing the points given depending on how
rural the area is [14].

2.6.2 Reason for doing gamification

The reason why gamification works is that it brings motivation to the people using the
application. Bohyun Kim splits motivation into two categories, extrinsic and intrinsic, where
extrinsic motivation refers to external rewards such as points, and intrinsic motivation refers
to doing an activity because it is enjoyable [14]. People using a gamified application are
often extrinsic motivated since there are rewards associated with the task. However, there
are exceptions where the users are intrinsically motivated[14] For instance, people enjoy
contributing to OpenStreetMap through StreetComplete. Since there are multiple ways of
motivating people to keep playing the game, it is essential to tailor the application according
to the target audience because this can determine how successful the application is.

However, there are also some problems when trying to motivate people to keep playing or
encouraging them to do specific tasks. One of the problems when controlling them through
positive feedback or encouragement is that it leads to the feeling of being manipulated. As
a result, the users will disengage from using the application, and they would most likely not
reengage [14]. Another problem is the lack of a clear goal with the application, for instance
when the goal is to increase the total number of contributions or to increase the map-data
quality through team play. This could lead to an application that achieves neither of the

9

Group SW716F20 2. Problem Analysis

previously mentioned goals or achieves both goals in a mediocre may, which makes the users
disengage from the application.

2.6.3 User Types

In order to better design a game experience that caters for a specific type of player, players
can be divided into groups that have certain preferences in regards to what they wish to get
out of a game. One way to do this is by classifying them using Bartle’s taxonomy of player
types [15].

Bartle’s Player Types are a way to group players of an online game into four categories:
Killers, Achievers, Socialisers and Explorers. This is done such that development decisions
can be consciously made to cater to a specific group, and the potential consequences and
impact of such a choice on the playerbase become better known. At the same time, Bartle’s
player types are less relevant for the topic of gamification, as they are mainly meant to
describe online players. Andrzej Marczewski redesigned Bartle’s model such that it better
fits the players of a gamified application. To this avail, he proposes six players types to
better describe the motivations of players engaged with a gamified system. These can be
taken into account when designing the system, resulting in a better experience [16].

The six types of users of gamified systems that Marczewski proposes are:

• Socialisers: Motivated by Relatedness, socialisers want to interact with other users
and create a social experience through the system. This is done by either meeting new
people through the system or using it as an excuse to talk with other people.

• Free Spirits: Motivated by Autonomy and Self-expression, free spirits wish to create
and explore using the system. This often means not following the exact set guidelines
and seeking challenges outside of what the system offers at surface value while exploring
the system. Free spirits are the type of users who will have the fanciest avatar and
create the most personal content in an effort to build new things.

• Achievers: Motivated by Mastery, achievers look for new things to learn and chal-
lenges to overcome. They want to learn everything about the system and then apply
it to “play” the game to their utmost ability. The person at the top of a leaderboard
is usually an achiever

• Philanthropists: Motivated by Purpose and Meaning, philanthropists are altruistic
in their intentions, wanting to give to other people and enrich their lives. In the case
of a gamified mapping system, this type of user is most likely already using some type
of mapping tool prior to finding the gamified system, simply because they wish to
contribute regardless of getting anything in return.

• Players: Motivated by Rewards, players will do whatever is required to collect rewards
from a system. They are the group most willing to play the game and are in it for
themselves.

• Disruptors: Motivated by Change, disruptors are unique to gamified systems in the
sense that they are players who do not wish to “play” the game. Instead, they seek to
disrupt the system, either directly or through other users in order to force a positive
or negative change. In the case of a mapping system, disruptors would be people who
purposefully submit wrong information about the mapped area.

While Players and Disruptors are both extrinsically motivated by rewards from the game
or other players’ frustrations, the four remaining user types are intrinsically motivated,

10

2.7. Problem Statement Aalborg University

meaning that they are motivated by factors not necessarily provided directly by the game,
but factors outside of it such as interacting with other players, helping other people, or
achieving mastery of the system for their own sake.

It is nevertheless possible to design the game to cater differently to these four groups. For
example, socialisers would enjoy a game that empathises teamwork and communication,
despite these not being direct requirements to play or “rewards” from the game itself. Like-
wise, a leaderboard to keep track of the top-performing players in the area adds little to the
game itself but allows achievers to keep track of how they fare compared to the rest of the
playerbase.

2.7 Problem Statement

We define a problem statement based on the problem analysis. The goal of the rest of
the report is to provide a solution to the problem statement. In the problem analysis, we
explored what kinds of contributions exist and who already contributes to OpenStreetMap.
We found that most contributors are not very active, and few are very active. We want
to make contributing more appealing for those that only map a little, or people that may
not even know about mapping. We also explored existing solutions and how gamification
can motivate users. StreetComplete makes it easy for Android users to make a lot of bite-
sized contributions. We would like to further expand on this principle and use gamification
to motivate users to cooperate and compete to contribute. By cooperating, users could
contribute through social activities and invite friends new to OpenStreetMap to contribute.

How can we develop an application that utilises gamification to increase
contributions to OpenStreetMap, both by motivating mappers to map
more and by onboarding new people to mapping?

11

Chapter 3

Design

In this chapter we describe the design of MapTogether, as well as the process we use for
making the design decisions throughout the project. We also set forth the requirement for
MapTogether for how we can realise the propositions for the final implementation.

3.1 Audience

In this section we look at the potential audience, and how we can cater a solution to them.
The potential users can provide requirements and prioritisation of features. This work is
targeted towards groups of young teenagers as well as adults who likes outdoor activities and
want to stay active both health-wise and socially. This could be scout groups or families that
play outdoors together. The purpose of this application is to benefit the OpenStreetMap
community and developers who use the OpenStreetMap data. It seems logical to include
features that make it attractive to people that are already familiar with OpenStreetMap.
Experienced mappers know more about what kind of features can be helpful for them to do
more for OpenStreetMap, however, as mentioned in the problem statement, we also want
to introduce OpenStreetMap to more people.

In order to gain a perspective from users, we develop three personas. These are fictional
characters and not real people. Any resemblance to real people is coincidental. The per-
sonas should be as realistic as possible and resemble people with different perspectives and
needs. Constructing these personas gives us insights into a number of requirements and
their prioritisation. All personas have general information about themselves, a motivation,
a story related to the topic, and some questions they might have about the application.

13

Group SW716F20 3. Design

Daniel

• 16 years old

• He is a troop scout

• He loves to be outdoors

• Has never heard of OpenStreetMap
before

• Daniel uses an Android phone

• From Denmark

Technophobe Technophile

Indifferent Joy in contributing

Indoorsy Outdoorsy

Daniel’s Situation

Goals, motivation:

• Planning activities for the local scout
group

• Doing good for the community

• Getting better quality of local maps

• Getting new and better experiences
with the scouts

Daniel’s Story

I joined the scouts at age 7 after seeing
the fun my friends had, and I have been
with the local scout group since. Lately
I have been getting more responsibility,
and have to plan a few sessions with my
friends, but have been struggling to find
new and exiting things to do, instead of
doing the same things.

Questions

• Will our contributions be used?

• Do all my friends have to create an
account?

• How many/few can participate?

• Can I change the activities, so that it
doesn’t feel the same every time?

• Will the application work when we
don’t have internet?

As a scout, Daniel is doing activities with friends outdoors, but he is also inclined to help
the local community. Daniel wants to be helpful, so the contributions should matter. He
is concerned if everybody in his group is able to join the activity, since it might be a
large group. Since Daniel is a scout, the activity should work in remote areas with bad
connection, such that mapping in places where phone signal don’t reach won’t become an
issue. As Daniel plans activities for his scout group, he might want the activities to vary to
keep them interesting: It would increase the longevity if the activity could be customised or
changed.

14

3.1. Audience Aalborg University

John

• 42 years old

• Father of three kids
(12, 14 and 17 years old)

• Goes for walks and small trips with
his family

• Has never heard of OpenStreetMap
before

• From Canada

Technophobe Technophile

Indifferent Joy in contributing

Indoorsy Outdoorsy

John’s Situation

Goals, motivation:

• Having a family activity

• Spending time outdoors

• Staying healthy and active

John’s Story

I like spending time with my family
doing different activities, like playing
board games or football in the garden.
I try to get my children to do outdoor
activities to stay healthy, but it is not
always easy. I know one of my friends
does something called geocaching and it
sounds interesting, I would like to try it.

Questions

• Is it complicated to add data?

• How long time does an activity take?

• Will all my kids be able to use the
application?

• Does it work on my kids different de-
vices?

John cares about staying healthy, and wants to do outdoor activities with his family. He
is not particular good with technology, so starting an activity should be very simple, with
minimal setup and registering. The activity itself should be fun for his children, and maybe
also possible for John to do alone.

15

Group SW716F20 3. Design

Tsu

• 23 years old

• Uses StreetComplete from time to
time

• Uses Vespucci to edit when Street-
Complete cannot do the task

• Loves to explore her city and cities
she travel to

• From Taiwan

Technophobe Technophile

Indifferent Joy in contributing

Indoorsy Outdoorsy

Tsu’s Situation

Goals, motivation:

• Wants to get friends into the Open-
StreetMap community

• Wants to contribute to the Open-
StreetMap project more

Tsu’s Story

I really like the OpenStreetMap project
and what it is doing. It is a good cause
that more people should contribute to.
I like using StreetComplete because it’s
more fun than using a normal mapping
app, but it’s annoying having to switch
to other editors. I often hang out with
friends, but most of them are not that
interested in mapping.

Questions

• Does the application allow me to edit
more than StreetComplete does?

• Can I play with people in different
timezones?

• Does the edits always appear on my
own account?

Tsu is already an adept mapper, and knows existing applications for contributing. She
receives great joy in contributing and seeing her growing list of past contributions. Be-
cause of this, the contributions added through the activities should be linked to her own
OpenStreetMap account. She might also appreciate a leaderboard (or similar) feature, to
compare her contribution score with friends and others.

The provided personas give us ideas about what types of features can be useful and what
requirements are essential. We will now look at what specific requirements we should satisfy
and what features should be implemented.

3.2 Requirements

Looking at everything brought up in the problem analysis, we derive some requirements.
The different requirements are not of equal importance. For this reason, we prioritise them
using the Moscow prioritisation technique[17]. This involves labelling the requirements
with either must-have, should-have, could-have, or won’t-have. The must-have requirements
are the most important ones. If even one of them is not fulfilled, the application will be
considered a failure. The should-have requirements are important, but not necessary for
the project to provide value. Could-have requirements are desirable and could improve the

16

3.2. Requirements Aalborg University

user experience or customer satisfaction, however, these will only be implemented if time
permits. The least important requirements are labelled as won’t-have. These are the ones
that simply are not important enough to even consider in this project. The requirements
are given in the following list with the most important ones first.

Must Have

1. The users must be able to maintain existing map data by tagging like, for
example how it is possible in StreetComplete, where users can update the opening
hours of shops or the surface material of a road.

2. The application must not incentivise the users to add incorrect data since
that is the opposite of the intended goal of the application.

Should Have

3. It should be possible to add new POIs because users like the persona Tsu, who
already uses StreetComplete, misses this functionality and finds it annoying that she
should switch to more complicated editors to add new POIs.

4. The application should work on major phone operating systems because
all three personas want to do the task with other people. An example is the scout
Daniel, who lives in Denmark, where 47% of the population1 uses iOS, and the rest
use Android. Daniel will not choose the mapping as an activity for the scouts if half
of them are unable to participate due to the application being incompatible with their
phone.

5. The application should use gamification elements to motivate users, since con-
tributing to OpenStreetMap is generally a mundane task and only provides intrinsic
motivation.

Could Have

6. The application should use social features to incentivise users to map together
and invite new people to contribute.

7. The user interface could be similar on different platforms, meaning that
people experienced on one platform can still teach people on other platforms. All the
personas want to spend time with other people, and the lower the barrier to entry, the
less effort people have to put in to get other people to map.

8. The application could be usable even without permanent access to the
internet. Contributions could be saved locally and uploaded later, when an internet
connection is available. This is an important requirement for users like Daniel and the
other scouts, who sometimes go to places where no internet is available. Furthermore,
it will make it possible for everybody else to map when being abroad where they may
not have the same possibility to stay online as when at home.

1According to MereMobil.dk who got access to data from Gfk https://meremobil.dk/2020/01/android-

vs-iphone-tallene-du-ikke-maa-se/

17

https://meremobil.dk/2020/01/android-vs-iphone-tallene-du-ikke-maa-se/
https://meremobil.dk/2020/01/android-vs-iphone-tallene-du-ikke-maa-se/

Group SW716F20 3. Design

Won’t Have

9. The application will not have support for multiple languages. Multi language
support is important to allow as many people to map as possible, but we deem that
this is not as important or interesting in the earlier stages.

3.3 Game Design

With the requirements in mind, we define the core experience the user should have when
using the app. Designing the experience can be helped a lot by working along with a
framework for game design. One such option is the idea of thinking about the gameplay as
nested loops of recurring action [18].

Extra Credits made a video on Youtube about game loops “The Real Core Loop - What
Every Game Has In Common”2. Figure 3.1 shows the game loop presented in their video
as a graph between different phases. The game loop is an abstract model of what a player
does when playing a game. First, they define some goal/objective, and then they gather
information on how to achieve this goal, then they develop and test a hypothesis. Finally,
depending on the success or failure of such a test, they either define a new objective or
gather new information to test a new hypothesis.

Define the objective

Gather information

Synthesise a hypothesis

Observe results

Test the hypthesis

Figure 3.1: Visual interpretation of Extra Credits’ game loop from “The Real Core Loop -
What Every Game Has In Common”.

If we look at StreetComplete, we can see that one of the smallest core loops in the gameplay
is picking a quest, and then answering the question to solve it (as can be seen in Fig. 3.2).
This base loop is quite simple and can be made a joy to use by applying various design
techniques to make it feel good to do, like applying animations and sounds to the actions.

This core loop itself is not enough to keep users attention for a long time, and some other type
of motivation is needed. This could be an extrinsic motivation like enjoying contributing
to OpenStreetMap because it is a shared owned community resource. Far from all players
will be motivated by this alone, and we see that StreetComplete does not rely on this either
because it has an outer game loop in its achievement and leaderboard system.

2https://www.youtube.com/watch?v=mGL5YGcAxEI

18

https://www.youtube.com/watch?v=mGL5YGcAxEI

3.3. Game Design Aalborg University

Figure 3.2: Solving a quest in StreetComplete

(a) Profile overview (b) Achievements (c) Point breakdown

Figure 3.3: Three of the screens used for the outer game loop of StreetComplete.

StreetComplete makes use of outer game loops to create long term goals for the player.
The profile screen of StreetComplete (Fig. 3.3a) contains a view of the users’ placement in
their regions leaderboard. The leaderboard position is never shown graphically, and it is
not possible to see the other users on the leaderboard. Furthermore, the user has to go into

19

Group SW716F20 3. Design

a two-level submenu to see the leaderboard position, which is not optimal for making sure
the user always has a set goal in mind. We can make the objective definition part of the
game loop easier by displaying the users ranking more prominently. We can also allow for
an intermediate loop by showing all the users on the leaderboard, so the player can have
a subgoal of “passing player X” instead of relying on a more general “climb the ranks”
goal. Especially the “climb above player X” and the “get to the top of a list of named
players” motivations play into the Achiever archetype. An example of the loops can be seen
in Fig. 3.4.

Do Quest

Climb a Rank

Climb Above Player X

Top Everyone on the Leaderboard

Figure 3.4: The competitive game loop of visible and named leaderboards. It can be even
more motivating if X is someone the player has some strong reason for being competitetive
with (i.e. a friend).

3.3.1 Achievements and Player Profiles

Another thing StreetComplete does for player motivation is the achievements screen, as
depicted on Fig. 3.3b, where the users will hit milestones along their mapping. An example
is the “Runner” achievement, obtained for solving quests that help people on foot, such as
questions about sidewalks or paving material. StreetComplete does not show the achieve-
ments in advance, which means they always come as a surprise for players, which can be
beneficial in providing a reward, but for the players that associate with the Achievers and
Players types mentioned in Section 2.6.3, it might not be the best choice. As seen in Fig. 3.1
the first step in a game loop is to define an objective, which is impossible for Achievers and
Players that want specific achievements if they are hidden. Furthermore, it is impossible to
see other users’ achievements, so there is no way to show off your own achievements other
than in person or share them with a screenshot. A possible way to improve on this could
be to make player profiles public and allow users to customise their public profile through
banners and selecting achievements they want to display. This would lead to a game loop
as seen on Fig. 3.5.

Do Quest

Increase Achievement Score

Obtain Achievement

Obtain Badge/Banner

Show it off on Profile

Figure 3.5: The achievement game loops in a system where achievements are not only
surprises and profiles can be viewed and customised.

20

3.3. Game Design Aalborg University

3.3.2 Time-based Leaderboards and Brackets

StreetComplete uses all-time regional leaderboards. Unfortunately, this means it might be
tough to climb in the rankings because the person ranked one place before, might have played
the game for a long time, and have such a massive lead that overtaking seems impossible. We
can work around these massive leads by employing time-based leaderboards, as it has been
done in other gamified processes such as the language-learning platform Duolingo3. Duolingo
makes heavy use of a week-to-week leaderboard and encourages climbing the ranks even more
by splitting up players into “leagues” or brackets. Hence, the learners only compete with
other learners who normally get a similar amount of points each week. Furthermore, at the
end of every week, the top learners in a league are promoted to the next league, and the
bottom learners are demoted. Therefore, getting promoted to higher leagues would motivate
especially Achievers. This weekly loop is shown on Fig. 3.6. Employing a similar system
might net a big effect on creating many nested game loops and making it easy for players to
define their goals, so there is also something to work towards when they are out mapping.

Do Quest

Climb a Rank

Top the Weekly Leaderboard

Get Promoted to Next Bracket

Do Quest

Climb a Rank

Escape the Bottom of the Leaderboard

Stay in the Current Bracket

Figure 3.6: The game loops of a bracket based weekly leaderboard system for mapping.

3.3.3 Socialising and Gamified Mapping Parties

All of the mentioned features lean mostly into the things that attract Players and Achievers.
If we use design elements that attract the other player types, it might help the app reach
a wider audience and increasing the amount of mapping done. One of the player types
not directly touched by StreetComplete (until recently) is the Socialisers. However, as
mentioned in Section 2.5.1, StreetComplete introduced a feature to split quests up among
mappers walking together physically. This is possibly to make StreetComplete nicer to use
for mapping parties, which are events where people meet up and map together4. It seems
likely that the people meeting up to map together would fit with the Socialiser archetype,
and since mapping via StreetComplete often requires being (or have been) at the location,
mapping parties seem like the best way for Socialisers to map. While StreetComplete now
has better support for mapping together, it is not gamified in any special way compared to
the solo mapping experience. One way to change this is to create motivating game loops
around doing activities together.

One idea for gamifying the mapping parties can be derived from the scouting activity of
walking to some different points and completing tasks at those locations. Basing the gamifi-
cation off scout activities might make it natural to use MapTogether in the scouting context
Daniel would use it in. The activity could be structured around going from one location to
another and completing some specified amount of mapping in each place. This would create
an overarching loop, finishing a location being an inner loop of that and finishing a single
quest being an inner loop of that as shown in the leftmost game loop on Fig. 3.7.

3https://www.duolingo.com/
4https://wiki.openstreetmap.org/wiki/Mapping_parties

21

https://www.duolingo.com/
https://wiki.openstreetmap.org/wiki/Mapping_parties

Group SW716F20 3. Design

Do Quest

Finish Location

Finish Activity

Do Quest

Climb a Rank

Get Above Player X

Figure 3.7: The game loops of the multiplayer mapping activities. The leftmost being the
immediate goal of completion, and the rightmost being the possible competitive goals if a
activity-leaderboard is introduced.

Another feature that might encourage the social player type is groups. Players could form
groups where their contributions could be combined in a joint effort. Groups could possibly
compete with other groups in some common score between the group members. The com-
petition would then be more a cooperative experience which could be good for the social
player type.

3.3.4 Gamification of Surveying

The previous design ideas we have been describing have primarily been quests that exist in
StreetComplete. The quests are only map maintenance tasks through extensive and updated
tagging and not the creation or removal of points and ways. Surveying is harder to define
as a set of quests because there is no way to know for certain if a blank area on the map is
unmapped or physically empty, other than having a person survey the area.

StreetComplete does not have the ability to create or remove details on the map beyond
tagging, which means it is a task normally delegated to more powerful mapping tools. This
breaks with the gamification elements since the user is not rewarded for mapping outside
of the app, and it also adds a hurdle for the user to have two different tools needed to
map. Therefore, adding the ability to map new things may improve the mapping. However,
without any gamification elements, that type of mapping might only be attractive to the
Free Spirit and Philanthropist player types.

Ensuring that the player can define a goal when surveying means that we need to help
them break down the “survey the world” goal into smaller tasks. One way of doing this
is by decreasing the region’s size that the player aims to survey. OpenStreetMap contains
geographical subdivisions. Many of them are things like nations, regions, city limits or a
neighbourhood in a city. This is a great reduction in size, but it can still be very over-
whelming for the player to survey such large areas and having a quest asking “Is Aalborg
mapped completely?”, which is impossible to answer due to the scale. Therefore, we need
to do further subdivision.

We can see in Fig. 3.8a that dividing the map into grid-cells of a size which a single person
could survey in around a minute could allow for queries easier than surveying an entire
neighbourhood at once. The problem with grids can be seen in a cell, like the top left
square of Fig. 3.8a, where a building splits the two halves, and to get an overview, the
player is required to walk around the building. The problem can be overcome by using an
alternative way to subdivide the map like shown in Fig. 3.8b.

To further gamify surveying, the community-survey status of the tiles could be visible to the
player with colouring or the likes. This could also help the player decide what to do next,

22

3.4. Features Aalborg University

(a) (b) (c)

Figure 3.8: Two examples of subdivisions of the map for surveying, and an example of a
partially surveyed area. The left-hand side figure shows a evenly split subdivisions, and the
middle figure shows better subdivisions

as they could pick an area with more unmapped tiles, which could also come with a higher
reward, to encourage surveyors to map areas that are not well mapped instead of focusing
on the frequently used and mapped areas.

Having a map with changeable tiles like in Fig. 3.8c might also offer the motivation of
completely filling in an area. However, painting in the area is not all: it is easy to imagine
the map as a canvas, which opens up motivations for carto-vandalism, as explained by
Ballatore [19]. For our case, we assume that free-spirits using the app might engage in the
form of artistic carto-vandalism of painting things with these tiles. Contrary to changing the
map directly, this form of “painting on the canvas” is not only not detrimental, but a positive
force if the users actually do surveying to paint. Carto-vandalism only becomes problematic
if the users fakes the survey-questions in order to paint on the canvas resulting in tiles being
marked falsely as surveyed. We can mitigate this carto-vandalism in multiple ways. We can
show the the player only tiles they have surveyed themselves, thereby removing the problem
of having falsely-marked tiles. Alternatively, we can avoid letting a single user mark a tile
as surveyed, thereby relying on different users not having the same aligned vandalistic goals.

A player type that is incredibly difficult to accommodate is the Free Spirit. This is due to
their nature of exploring the system and finding their own use instead of following the usual
loops of the game. Due to their way of playing, any feature or change made to accommodate
the free spirits is unlikely to find great reception as free spirit players find their own meaning
with the game instead of accepting the one put in front of them.

The last player type we need to consider is the Disruptors. We account for these players
differently than the other player types, as they can be counterproductive to the purpose
of MapTogether. The issue with Disruptors is that they might contribute bad data to
OpenStreetMap though MapTogether, which is troubling as this is directly counter to the
purpose of MapTogether. Because of Disruptors, it is a good idea to validate the contribu-
tions and perhaps players through MapTogether, and not trust the info provided without
having multiple players validate it. ,

3.4 Features

Now that we have the design mostly specified, we make a plan for the features that are most
important. To start with, we define which features depend on other features to see how
coupled they are. When we plot it as a directed graph in Fig. 3.9, we see that some features

23

Group SW716F20 3. Design

are necessary for nearly all other features.

Maintenance quests

Player scoreSocial acitivity Achievements

Persistent Leaderboards

Surveying quests

Player profile

Public player profile Activity history

Customize player profile

Time-based leaderboardsLeagues for players

Figure 3.9: The features and how they depend on each other. Arrows denote that features
cannot be completed until all incoming arrows are implemented. Dashed arrows mean at
least one dashed dependencies must be fulfilled.

Maintenance quests are simple tasks like those in StreetComplete that can easily be
completed.

Surveying quests are tasks where players must “complete” a small zone on the map as
described in Section 3.3.4

Player profile shows information about a player and their friends. It can also contain
information about achievements and more if those features are implemented.

Social activity refers to players completing quests together in the same area and compet-
ing for the most points.

Player score is a players total amount of points attained from completing either type of
quest.

Achievements are awarded for milestone accomplishments such as completing a certain
amount of a quest type.

Public player profile is the player profile information that the player decided to share
publicly, such as specific achievements, leagues or leaderboard positions.

24

3.5. Object-Oriented Design Aalborg University

Activity history is a log of activities that the player has taken part in.

Persistent leaderboards are leaderboards that list players’ total points within a param-
eter, such as a global leaderboard or national leaderboards.

Leagues for players are time-based leagues, where at the end of the given time period,
top players in a given league are promoted to a higher league, and the bottom players
are relegated to a lower league.

Time-based leaderboards are leaderboards where only points gained within a certain
time frame are counted.

Customise player profile is the ability for players to customise what is displayed on their
public profile, based on leagues, leaderboards and achievements.

There are two key features: player score and social activity. Scores open up for having
leaderboards and motivates competitive users. Social activities will make MapTogether
stand out and motivate people to invite their friends to use it. To implement these features,
we first need to have some sort of quest/task implemented. We divided this into maintenance
quests (much like StreetComplete) and surveying quests, as explained in Section 3.3.4.

We start by implementing some simple maintenance quests, so social activity and player
score systems can then be implemented afterwards. More complex and diverse maintenance
quests can be added later. Before we can implement any quest types, we need to implement
a way to talk to the OpenStreetMap API5, to download raw map data, upload contributions
and log in to their OpenStreetMap account through MapTogether. In order to implement
the social activity mentioned in Section 3.3.3, MapTogether needs to be able to communicate
between devices.

Player scores should be trivial to implement, but before we can implement persistent leader-
boards, we need to set up a way to store and synchronise player data – such as the player’s
score – between different users. The leaderboard would then be calculated based on the
synchronised data. While implementing persistent leaderboards, we also work on the player
profile, which should be updated when more features are implemented. After that, the rest
of the features can be developed in parallel and almost in any order.

3.5 Object-Oriented Design

In this section, the solution is designed according to methods from Object-Oriented Analysis
& Design (OOAD) [20]. This is a method for design a complete application, from the initial
idea to the complete design. We will, however, start from a later point since we already
have an idea and the target audience. The parts after the initial idea phase that we will use
are the problem domain and the application domain. First, the problem domain is analysed
to understand the scenario that the system will imitate. After this, the application domain
is analysed to understand how the target audience interacts with the system.

Before we start the analysis, we must perform a FACTOR analysis. Then, the FACTOR
analysis model is used to determine the necessary criteria for a system definition to form a
concrete system definition.

5https://wiki.openstreetmap.org/wiki/API_v0.6

25

https://wiki.openstreetmap.org/wiki/API_v0.6

Group SW716F20 3. Design

[F]unctionality: Support for adding and editing OpenStreetMap map data.

[A]pplication Domain: The players who contribute data to OpenStreetMap.

[C]onditions: Developed through requirements from the target audience.

[T]echnology: Android and iOS phones. A database running on a server.

[O]bjects: Users, OpenStreetMap map data, contributions.

[R]esponsibility: Supports the addition of nodes and edits of current map data. Auto-
matically generates quests and distributes them among the participants.

System definition A mobile application for interacting with OpenStreetMap, where tasks
are distributed over the map and these quests lead to OpenStreetMap contributions. Oppor-
tunity for social interaction and competitive gameplay with friends through the multiplayer
nature of the application and its leaderboards. Creating and configuring the game mode
is also done through the mobile game, which is based on either Android and iOS with in-
ternet and GPS capabilities. The development process should be conducted based on the
requirements from Section 3.1.

3.5.1 Problem Domain

In the following section, the classes, events and structure of these classes are identified.
Events can occur several times for each class. We consider if an event can occur once or
multiple times for each class. This information is gathered and represented in an event table.

Classes are a fundamental part of the problem domain, and identifying classes is a way
to begin forming an overall understanding of the problem domain. A class is an abstract
representation of similar objects, which share behaviour and attributes. The first step is to
find the class candidates. To maximise the different perspective of the problem domain, it
is beneficial to have a long and varied list of class candidates. To have an abbreviation of
the candidate list, some of the classes in the class candidates list on Table 3.1 are already
collections of objects.

Quest User Activity

Leaderboard POI Group

Waypoint Message

Table 3.1: Class candidates

These candidates have been classified in Table 3.3. Some of these classes encompass multiple
different objects. For instance, there are multiple different quests, but there is no difference
in these quests from the systems point of view. The Activity class contains all the data
related to a specific activity, such as the users partaking, the quests in MapTogether, the
game mode and the waypoints related to the activity. These waypoints are indicators on
the map, and the Waypoint contains its location as well as the quests associated with it.
The waypoint itself is also a part of a game. The POI class revolves around a location and
the information about that specific location, for instance, a bench and the materials it is
made of.

After identifying the class candidates, the event candidates must be identified. An event
is an instantaneously occurring action, which is experienced or performed by objects in
the problem domain. Finding event candidates constitutes the next part of getting an

26

3.5. Object-Oriented Design Aalborg University

Activity created Quest added Group invite received

Activity started Quest completed Group invite accepted

Activity cancelled User signed up Message sent

Activity completed User completed waypoint Message received

Activity invite sent Group invite declined Message deleted

Activity invite received Group invite sent POI added

Activity invite accepted Group created POI deleted

Activity invite declined Group joined POI updated

Followed Group left

Waypoint visited Group deleted

Waypoint completed Group changed

Table 3.2: Event candidates

understanding of the problem domain. To find the event candidates, one could examine
similar computer systems or analyse activities from the beginning to the end.

The events in Table 3.2 have been found by looking at the prototypes and system definition.
Event candidates are found by using verbs that are used to describe what happens to an
object. As with the class candidates, the found events will be evaluated in the event table.

The event table describes the relationship between the evaluated classes and events. The
classes and events in the event table have been chosen from the class candidates in Table 3.1,
and the event candidate in Table 3.2. The general evaluation criteria used for the classes
and events are whether the class or event is within the system definition and whether the
class or event is within the problem domain.

After evaluating the classes and the events based on the general criteria, some more specific
evaluation criteria can be used. For the classes, the information within them has to be
unique while also encompassing multiple objects, they must however not encapsulate too
many events. For the event, one has to answer whether they are instantaneous, atomic and
if they can be identified when the event happens. These specific criteria then lead to the
event table in Table 3.3.

To determine whether an event happens once or multiple times, behavioural patterns are
used. Behavioural patterns are used for better understanding the dynamics of the system,
by showing event traces. An example of this relation is Quest completed. The event Quest
Completed can only happen once per quest, whereas a user can complete multiple different
quests. Completing quests influences both the global and group leaderboards, and it also
helps with completing the current waypoint. After completing the event table, a structure
of the relations can be made, which is represented in a class diagram.

Structure

In the following paragraph, the relations between the classes from the previous section is
inspected. This relation is structured as a class diagram. This class diagram gives a model
of the system’s problem domain and gives an overview as to how various classes interact
with one another. The class diagram shown in Fig. 3.10 represents an early structure of the

27

Group SW716F20 3. Design

Events\Classes Quest
User Acti

vity

POI
Leaderb

oard

Group
Waypoint

Mess
age

Activity created * +
Activity started * +
Activity cancelled * +
Activity completed * +
Activity invite sent * *
Activity invite received * *
Activity invite accepted * *
Activity invite declined * *
Followed *
User signed up +
User completed waypoint * * *
Waypoint visited * * *
Waypoint completed * * +
Group created * * +
Group joined * *
Group left * *
Group deleted * +
Group changed * *
Group invite sent * *
Group invite received * *
Group invite accepted * *
Group invite declined * *
Quest added +
Quest completed + * * * *
POI added * + * * *
POI deleted * +
POI updated * * * * *
Message sent * * +
Message received * * *
Message deleted * * +

Table 3.3: Event table. The events marked with an asterisks (*) can occur zero or multiple
times. The plus (+) marks the events which happen zero or a single time

application and gives us an idea of how to start the development of the application. The
classes Element and Changeset comes from OpenStreetMap. An element represents a node,
way or relation. A changeset represents a set of contributions.

3.5.2 Application Domain

In this section, we analyse the application domain, with a focus on identifying the necessary
system functions. The functions will be used to design the user interface in Section 3.6.
Both the system definition and the problem domain model are used in this analysis.

Functions

These functions represent the necessary functions for the program to achieve the users’
goals. These functions have been identified and analysed based on previous information.
The complexity of a function is an estimation of how difficult it is to develop. The types of

28

3.5. Object-Oriented Design Aalborg University

Figure 3.10: Diagram of the classes in the application. These have been found based on the
event table

29

Group SW716F20 3. Design

Functions Complexity Type

Leaderboard change Simple Compute

Find nearby quest Medium Compute

Create Activity Complex Compute

Answer quest Simple Update

Follow a user Simple Update

Join a group Simple Update

Send invite Simple Update

Add point of interest Medium Update

Send message Medium Update

Complete Waypoint Complex Update

Login Complex Update

Upload contribution Complex Update

Complete Achievement Simple Signal

User GPS location Medium Signal

View Achievements Simple Read

View Leaderboard Simple Read

User search Medium Read

Show History Medium Read

Table 3.4: Functions listed along with their complexity and type

functions are divided into four categories compute, update, signal, read. Compute is used for
functions that compute data before it is either displayed or added to the database. Update is
used for changes in the system without adding new information. Signal is used for functions
that monitor a continuous data flow and notifies actors in certain conditions. The fourth
and last category is Read, which retrieves one or more values, usually to display them in the
user interface.

With this categorisation and evaluation of the necessary functions for MapTogether the
primary object-oriented design has been laid out, both for the problem domain as well as
the application domain. The next step in designing the application is making a user interface
in accordance with this design before we implement the application.

3.6 User Interface Design

We have laid out the features of MapTogether in Section 3.4. Now we design the interface to
support user interaction with the different available systems and features. We draw simple
wireframes in Balsamiq6 to visualise and discuss the appearance of initial design ideas.

Balsamiq is a UI wireframe tool designed for quickly creating prototypes for a GUI such that
potential problems and shortcomings of the interface may be identified at an early stage of

6https://balsamiq.com/wireframes/

30

https://balsamiq.com/wireframes/

3.6. User Interface Design Aalborg University

development.

3.6.1 Main Screen

When opening the application, the first thing the user sees is the main “map” screen shown
in Fig. 3.12a. Opening the app initially takes the user directly to a slippy map – which
means the map has the ability to zoom and pan is integrated – of their surrounding area,
with the functionality to add data or complete quests instantly. Having tasks given to
the user from the moment they open the app is done in an effort to hook the user and
immediately give them a starting point rather than potentially repelling them from the
app, at the prospect of an extensive setup to get started. The user must sign up with
an OpenStreetMap account to successfully upload contributions, delaying the process until
necessary. MapTogether incentivizes users to try out the application, and make them more
likely to then sign up later due to the sunk cost-fallacy7. If the user has already completed
some quests or added a few locations, it would seem like a waste to not sign up and get
points and actually contribute to OpenStreetMap.

Given that the main menu is the first thing the users see, it is also responsible for navigating
to the remaining pages containing information that can not be displayed here. For this
reason, we put five buttons in the bottom right corner of the screen. The first button (from
left to right) opens the social screen described in Section 3.6.2. We choose a profile icon
for this button because the social screen is associated with the user profile and interaction
with other users. The second button is for panning the map to the location of the user.
The third button is used to indicate north, and pressing it, rotates the map so that north
is up. The fourth button is for synchronising data with OpenStreetMap so that the user
can download the most recent map data. The last button is “Menu”: pressing it brings up
additional buttons that allow the users to start an activity or access settings.

Aside from the quests present on the map, the user should also have the possibility of adding
Points of Interest (POIs). It is unknown by nature where these should be added, so the user
is instead allowed to create them by interacting with the map. Seeing as a single, quick
press is used for interacting with quests and dragging is used for panning the map around.
It is decided to use a long press on the map, in order to add a new POI at the clicked
location. This is not entirely optimal, as the user would require previous knowledge of how
to add a POI or find the feature through experimentation in order to successfully interact
with it. A solution could be to add a small tutorial, however that is out of scope for the
implementation during this project. Given that this mode of interaction provides the least
disruption to other features, it is nevertheless used as the method for adding a POI.

Adding a POI

After a long press, a prompt is used to finalise the addition of a POI. This process is shown
in Fig. 3.11. In order for a user to add a new POI, they must specify information about the
new point. The prompt opens a dialogue, where the user describes the required information
in accordance with the real-world information available to the user. For this purpose, we
use a slide-up menu with fields to give various info about the POI, such as the name, type of
venue and opening/closing hours. Once these fields have been filled out, pressing the button
at the bottom of the slide-up menu adds the POI. This should be visualised to the user by
instantly adding it to their local map data, such that they are aware the new POI has been
properly reported. We can then use the new node as a button to allow the user to edit the
data once more, in order for them to correct errors, or delete it in case of misplacement.

7A fallacy where someone convinces themselves to continue doing something because they have already
put time and/or effort into it

31

Group SW716F20 3. Design

(a) Pop up of POI adder after
long pressing on map.

(b) Description pop up upon
clicking to Add POI.

(c) POI has been added to the
map.

Figure 3.11: General flow for adding a POI on main map.

Doing a Quest

Quests appear on the map as they are fetched from the OpenStreetMap server, much like
StreetComplete. Quests have a distinct type of visual identifier, to help the user identify the
specific type of presented quest. An example of an identifier that shows a quest to confirm
whether a bench has a backrest or not can be seen in Fig. 3.12a. Quests like these appear
randomly on the map in the proximity of the player and vary depending on the data fetched
from the server. Activating the quest brings up a prompt, as seen in Fig. 3.12b. This prompt
allows the user to fill out information related to the specific quest. In this case, the user is
asked if the bench has a backrest or not. Upon having filled the prompt, it pops back down
and the quest is considered “completed”. This means the quest also disappears from the
users’ map to indicate that it can no longer be completed.

Activity

During an activity, users have areas where they need to complete a number of quests to
progress to the next waypoint. Starting an activity includes specifying certain conditions
such as distance, number of quests and inviting other players. Starting an activity initially
has two options: search or create new. Searching shows a list of nearby activities. Pressing a
nearby activity automatically joins it. Creating a new activity should have a tab for inviting
followers or nearby players, and another tab to specify rules for the activity, and a button
to start the activity. Once the activity has started, the current waypoint should be clearly
visible with a special marker on the map, so that users know where to go. An arrow points
the user in the direction of the waypoint to make it easy. A pie diagram for each location at
the bottom of the screen can be used to indicate how many remaining quests the user has
at each location before they are ready to move on to the next waypoint.

32

3.6. User Interface Design Aalborg University

(a) Bench backrest quests as
they appear on the map.

(b) Prompt to fill in information
regarding bench backrest.

Figure 3.12: Example of quest displayed on the map.

3.6.2 Social Screen

The majority of the features in Section 3.4 requires some socialising and interaction between
the users. Because of this, we have a social screen with the purpose of containing everything
in regards to profile and user-to-user interaction. We set up the social screen like a navigation
menu that houses a list of MapTogether’s social features in a menu bar at the bottom of
the screen. The body of the screen is occupied by whichever item is chosen in the menu. It
is necessary to be logged in to access the social screen so that data such as followers and
groups can be fetched from the server. Through the social screen, a user should be able to
access leaderboards, followed/followers, groups and log history. We put these four things in
their own tab in the bottom menu.

Leaderboard

As described in Section 3.4, we need to provide a view of leaderboards. The leaderboard
should provide users with an overview of their own placements and close competition or the
top scores. We would like different leaderboards based on location or time periods, the user
should have some menu that provides all the leaderboards they currently participate in.

As mentioned in Section 3.3.2, time-based leaderboards are a way to give players a reachable
goal to strive towards, as they will not be overwhelmed by having to climb above a person
who has been using the application to accumulate points for years, but rather on a week-
by-week or month-by-month basis where anyone can be competitive.

We separate time periods (weekly, monthly, all-time) in their own tabs as shown in Fig. 3.13a.
Each tab shows a scrollable list of all the leaderboards that the user currently participates

33

Group SW716F20 3. Design

(a) Leaderboard. (b) Expanded leaderboard. (c) History.

Figure 3.13: Social Menus for Leaderboard and History.

in. Each displayed leaderboard is identified by a title, as well as the current user’s ranking
and the total number of participants. This allows the user to immediately get an overview
of their position in each leaderboard.

Each leaderboard can be tapped, to gain an expanded view of the rankings, score and current
positioning on the selected leaderboard. An example of this can be seen in Fig. 3.13b.

At the top of the leaderboard screen in Fig. 3.13a, a small view of the currently logged in
player’s profile with their scores for the current day, week and all-time can be seen.

Follow List

Per the functions in Table 3.4, users should have a way to follow others and view their
profiles. For this, we have a separate menu in the bottom bar: The Follow Screen. The
purpose of the following screen is to let users see people they follow and the people that
follow them. This is mainly used to keep track of other people such that they can easily
be added to a group when creating it, as well as keep track of the scores of the various
people they follow. The follow list is unique to each user and displays a list of the people
they follow whilst simultaneously allowing them to follow new users or unfollow some of
their current following with little effort. The standard view of the follow list can be seen
in Fig. 3.14a. Any followee in this list can be selected to get an expanded view of said
player’s profile, displaying their score for the current week, month and all-time. The player
profile also displays said person’s ranking on their own leaderboards, such that the current
user can see their comparative performance in groups they participate in when inspecting
another’s profile. Viewing another user’s expanded profile is very similar to seeing one’s
own leaderboard as seen in Fig. 3.13a. However instead containing information about the
specified user, as opposed to the one currently logged in. Followers and followees can be

34

3.6. User Interface Design Aalborg University

(a) Follow List. (b) Follow New Screen. (c) Expanded Follow View.

Figure 3.14

separated into two tabs, in order to easily see a distinction. The expanded user profile can
be seen in Fig. 3.14

In order to manage the follow list, users need functionality to both follow and unfollow
people. The option to unfollow is not readily apparent on the follow list, as unfollowing
someone is likely to be a rare occurrence. For this reason, we keep the unfollow button away
from the main view of followers, so as to avoid the user mistakenly pressing it. Instead,
we put it at the bottom of the expanded follow view as seen on Fig. 3.14. This allows the
current user to manage their followings through visiting the expanded user pages on their
follow list. Alternatively, the option to unfollow is available by pressing and holding a user
for a few seconds. Doing so could give a small pop-up at the bottom of the screen, prompting
the user as to whether they want to unfollow the chosen user. There are no indicators to this
feature, which means it can be unintuitive for users. However, this is generally not a feature
expected to be used often by the majority of users. Some users may wish to frequently clean
out their follow list. In this case, unfollowing each followee separately becomes a rather
tedious task. This alternative is there to potentially make this task easier for some users.

Adding another user to the follow list is also important. We design two ways to do this.
The first is similar to unfollowing from their player profile page. At the bottom of the player
profile of any given player not already on the users follow list, the option to add the player
is added where the option to unfollow them would otherwise be as seen in Fig. 3.14. This
requires the user to find the player profile on their followers list or a leaderboard. The second
option is to add players by their username. a “follow new” button takes the user to a screen
shown in Fig. 3.14b. The functionality of the screen allows the user to enter the username
of a player that they wish to follow.

35

Group SW716F20 3. Design

Groups

Leaderboards are closely tied to the groups in which the user is in. Groups are displayed
separately on the leaderboards and could have specific leaderboards where different groups
could compete. The groups could be viewed much like the follow list. It should facilitate
the creation and deletion of groups. We design it in the same way as the follow list screen
described in Section 3.6.2, having a scrollable list of current groups each of which can be
interacted with.

Unlike the follow screen, however, users should be able to edit the groups separately as
opposed to only having the option to remove them entirely. This means the user should be
able to add or remove individual people from a group instead of having to create an entirely
new group. To this end, groups have an expanded view that can be accessed by opening
them. Within the expanded view, members of the selected group should be clearly visible
by any other member of the group. Moderators of the group are also able to invite and
remove participants from the group here, should they so desire. The groups created here
also appear separately in the leaderboard tab described in Section 3.6.2.

History

We think it would be useful for users to be able to get an overview of their recent activity
(follow updates, quests, activities). For this, we create a history menu. The history menu
grants the user a view over their recent actions, by presenting them with a scrollable list of
their previous actions taken with the app as shown in Fig. 3.13c.

3.6.3 Login Screen

A user is required to log in before they can report their completed quests, as well as access
MapTogether’s social features. As described in Section 3.6.1, the user should have the ability
to complete quests without logging in. This is to let the user start using the app quickly,
as well as retain their interest before they commit to signing up for an account. Instead of
prompting the user on opening the app, the user is asked to log in when trying to access the
social menu without being previously logged in. The user can then decide to either proceed
with the login return to the main map without doing so. The user must also receive a login
prompt after answering a quest. The users may not be interested in the social features
of MapTogether. Therefore they might not realise that their contributions are not being
reported, until after they receive the prompt. The login screen itself is a web link that leads
to the official OpenStreetMap login page.

3.6.4 UI Flow

To illustrate the flow of the app in regards to the design description, we draw a UI flow chart
shown in Fig. 3.15. It shows how the different pages direct to one another and provides a
general overview of the flow of MapTogether.

The majority of the arrows in Fig. 3.15 are bidirectional because most screens have a back
button. This returns the user to the location from which they got to the current screen in
the first place. The exception to this is the login screen which automatically directs users
back after logging in. There is no reason for users to return to the login screen without
first logging out again. The edges around the login require special conditions, which are not
directly apparent on the graph. To go from the map to the leaderboard, it is required that
the user first logs in. If the user is not previously logged in, the user is lead to the login
page, which will then redirect them to the leaderboard, on successful login, or return us to
the Map if the login fails or is cancelled.

36

3.6. User Interface Design Aalborg University

Leaderboard

Follow List

Groups

History

Follow New

Add Group

Quest

Mapping Screen

Settings Create Activity

Login

Figure 3.15: The various UI screens and how they direct to one another. The grey circle is
the starting point for the application.

37

Chapter 4

Implementation

In this chapter we describe the implementation details of MapTogether, based on the design
from Chapter 3. This includes descriptions of how both the server- and client-side specific
details of the design, were implemented in the final prototype. As well as the technologies
used therein.

We lay out the foundation for a slice of the full implementation, in order to create a functional
prototype within the allotted project time. The slice has the purpose of show-casing the
most important features of MapTogether and will include the features shown in Fig. 4.1.
We limit this chapter to describe the implementation of the slice.

Maintenance quests

Player scoreSocial acitivity Achievements

Persistent Leaderboards

Surveying quests

Player profile

Public player profile Activity history

Customize player profile

Time-based leaderboardsLeagues for players

Figure 4.1: The feature dependency-graph showing features that will be implemented in
white and features not targeted for implementation in grey.

39

Group SW716F20 4. Implementation

4.1 Architecture

To make the system fulfil the design outlined in Chapter 3, we have to plan which subsystems
to create, and which parts of the system handles which functions. Since we know that map
data will need to be fetched from the centralised OpenStreetMap server, we know that the
system will consist of at least a client on the user’s phone, and the OpenStreetMap server.
Part of the functionality and requirements are that we need to have communication between
devices, to support functionality like leaderboards and activities. A centralised approach
is simpler and better synchronisation but a peer-to-peer approach would be more in line
with Requirement 8 about making MapTogether work offline without a permanent internet
connection. Since we want the user’s phone to do as much of the work as possible, we start
out imagining a situation where the phone only talks to each other and the OpenStreetMap
servers as illustrated in Fig. 4.2.

OpenStreetMap Server

Client A Client B

Figure 4.2: An example of the peer to peer architecture where data is fetched from Open-
StreetMap servers.

If we chose this architecture, we will need to have some way of synchronising and connecting
all the clients to each other.

A solution to this is to introduce another subsystem responsible for the synchronisation of
data between the clients. This could be a server with an available WebRTC or REST HTTP
API, which takes the information from the clients and builds a database that can be queried
much more efficiently than each client building that database locally. This communication
design is illustrated in Fig. 4.3.

OpenStreetMap Server MapTogether Server

Client A Client B

Figure 4.3: An example of a client-server architecture where map data is fetched from
OpenStreetMap servers and social data is fetched from MapTogether servers.

This method provides much more simple communication. However, it introduces a single
point of failure, and with no revenue, the bigger the server needed for MapTogether, the
more losses the project will incur. Therefore we can try to use a hybrid approach, using
the online server for as few subsystems as possible, and thereby relying more on the user’s
phone for the majority of the computational power.

OpenStreetMap Server MapTogether Server

Client A Client B

Figure 4.4: An example of a hybrid architecture where map data is fetched from Open-
StreetMap servers and social data is fetched from MapTogether servers, with other tasks
being done with a direct connection between clients.

40

4.2. Subsystems and Components Aalborg University

Phones

client

MapTogether Servers

OpenStreetMap Servers

Graphical User Interface

Quest FinderQuest Solver

maptogether_api
Social-Data Client

Leaderboard Client
OAuth Check Client

osm_api
Map-Data Client
OAuth Consumer

server
Social-Data Manager

Leaderboard Manager
OAuth Check

database
Persistence Handler

OAuth Provider Map-Data Manager Tile Renderer

Figure 4.5: The component and subsystem diagram showing all hardware in the outer
boxes, components as the inner boxes with names in bold, and subsystems listed inside the
components.

The hybrid architecture in Fig. 4.4 would be the best to achieve the goals, but to keep
development time down, we will not consider peer-to-peer transfer of map and social data,
only the more limited activity data.

4.2 Subsystems and Components

Before we can specify exactly how the features are implemented, we will first define clearly
which subsystems make up the whole of MapTogether. The subsystems are logical units
that implement a feature, however, a single system component might be responsible for
multiple subsystems and a single subsystem might need to reside in multiple components.
Components are the real specific pieces of software that comprise the MapTogether code
base.

4.2.1 Graphical User Interface

This is the subsystem whose functionality was outlined in Section 3.6. The design is done,
but we need to make it available for the user. We can handle this in one of two ways: we

41

Group SW716F20 4. Implementation

create a UI that the client renders like most mobile apps, or it can be rendered remotely as
some websites do. One of the requirements for MapTogether is to have as much functionality
available offline as possible, therefore it seems better to have the client be responsible for
the GUI. We will place the Graphical User Interface subsystem in the client component
on the phone.

4.2.2 Map-Data

The Map-Data Manager is a simple subsystem since it is already handled by the Open-
StreetMap servers available with a public HTTP REST API. No further effort will be put
into considering alternatives to this service, however, for availability reasons, it might be
valuable to do caching of this data on the client. Since we do not write any of the code
or decide the architecture of OpenStreetMap subsystems, we will not create a component
on the OpenStreetMap servers, but simply place the Map-Data Manager subsystem there.
On the phone we will need a way to talk to the Map-Data Manager, so we will define a
Map-Data Client subsystem and place it in the osm api component.

4.2.3 Quest-Finder

The Quest-Finder is responsible for figuring out what parts of the map data is incomplete
or possibly out of date. This data needs to be turned into quests that can be displayed to
the user, solved and the fixed data uploaded to OpenStreetMap. This could be handled by
either the client or the MapTogether server. If it is done on the server it makes it possible to
easily refer to the same quest with a single id for easy reference and to avoid any attempts
at the same quest being solved by multiple clients. Doing this processing of the map data on
the server would increase the amount of bandwidth and processing the MapTogether server
would need to do. It also means the application becomes unusable if the MapTogether server
goes down, which means less resistance to failure.

Because of this, we will place the Quest-Finder on the phone inside the client component.

4.2.4 Tile-Renderer

This subsystem could be handled by all three parts of the architecture. The OpenStreetMap
websites slippy map is rendered by some freely available rendering-servers, which are avail-
able for public use, and that service or other similar paid tile-rendering services could be
used. This does require more bandwidth, as the map data has to be fetched as rendered
images or vector data and the user interface quality will deteriorate with the internet con-
nection.

We can also make the client render the tiles on the user’s device. This can result in less
bandwidth and quicker response times on the user’s device if the device is fast enough. It
does require more processing on the user’s device and might have an impact on the battery
life. Most of the premade rendering software is made for either iOS or Android, requiring
work to set up on each platform in order to fulfil the cross-platform requirement.

We can also choose to make the MapTogether servers host a tile-rendering service. This has
many of the same benefits and drawbacks as the third-party rendering services, only offering
more control over the look of tiles compared to the free OpenStreetMap service.

To support a cross-platform system more easily and reduce initial project complexity, we
choose to use the OpenStreetMap tile rendering service, as we also need to fetch map data
from the OpenStreetMap servers in order to find the quests. This means we place the Tile-

42

4.2. Subsystems and Components Aalborg University

Renderer component on the OpenStreetMap servers, and have our Graphical User Interface
talk directly to the Tile-Renderer.

4.2.5 Social-Information Handler

We need a subsystem that keeps track of which users follow who and how many contributions
have been made by a user. We can handle this in three ways:

It can be stored on the client only, which allows for offline usage and less load on the servers,
however, an approach to back up and move around the user’s stored data will be necessary
to support the user switching phones. It also means that data is lost if the phone is lost.

OpenStreetMap already has some social information stored. There is a friend/follow list
that works in the same way intended for MapTogether, which could be used to store data
about user relationships. If we do this, it will couple our friend-list to the OpenStreetMap
one, which means the user cannot use MapTogether without changing their OpenStreetMap
profile. It provides benefits in synchronisation between MapTogether and other services
using the OpenStreetMap profile, and it lets the MapTogether servers do less work.

The last way we can manage the social information is by making a service storing the infor-
mation separately from the client and the OpenStreetMap server. This provides decoupling
between OpenStreetMap and MapTogether, allowing the user to opt-out of the social fea-
tures, while also getting the benefits of information stored centrally. It does mean more work
has to be done on the MapTogether servers, but with the benefits it provides, it is the path
we will take. Therefore we place the Social-Data Manager in the server component and the
Persistence Handler in the database component on the MapTogether servers. Furthermore,
to interface with the Social-Data Manager, we create the Social-Data Client and place it in
the maptogether api component on the phone.

4.2.6 Login-Manager

We need a subsystem to manage both the credentials for doing changes to the Open-
StreetMap data, but also for changing the social information on the MapTogether servers.
OpenStreetMap provides the ability to use the OAuth protocol for authenticating external
applications via the OpenStreetMap login. Because of this ability, the decoupling between
OpenStreetMap and MapTogether will not have to require a separate login for each service.
It is a possibility to have a separate login for each service, but it seems to have no drawback
to unify them while making a breach of the MapTogether social manager less important.

To support the Login-Manager, we create three subsubsystems, the OAuth Provider already
handled by the OpenStreetMap servers, the OAuth Consumer in the osm api component
on the client, responsible for doing the OAuth workflow, and a OAuth Check subsystem in
the server component on the MapTogether servers for verifying that the OpenStreetMap
credentials the client supplies are valid. Lastly, we add the OAuth Check Client in the
maptogether api component on the phone. This four-way split can be seen in Fig. 4.5.

4.2.7 Leaderboard-Calculator

This is a subsystem that also could be implemented in one of three ways. We can calculate
the scores by looking at all changesets on the OpenStreetMap servers that have been created
since the start of MapTogether. These changesets can contain metadata tags that can be
used to figure out which changes are MapTogether related.

43

Group SW716F20 4. Implementation

1 <osm>

2 <changeset uid="11321" user="maptogether -test">

3 <tag k="comment" v="Add missing backrest info about ⤦
↪bench"/>

4 <tag k="created_by" v="MapTogether v0.2.2"/>

5 <tag k="maptogether_score_awarded" v=5/>

6 <tag k="maptogether_task_type" v=" ⤦
↪backrest_bench_quest"/>

7 </changeset >

8 </osm>

Figure 4.6: Changeset metadata we could use for storing MapTogether specific information.

The problem with the approach shown in Fig. 4.6 is the possibly very large amount of
irrelevant data queried from non-MapTogether changesets resulting in wasting bandwidth
and processing time on the OpenStreetMap servers and the client. One solution to this could
be to have processed leaderboards stored on a MapTogether server, only being updated with
the newest data once in a while, reducing the bandwidth while also not requiring much
storage, as only the compiled information needs to be stored.

The OpenStreetMap project might be weary of adding a bunch of metadata tags that do not
directly improve the OpenStreetMap map data but only serve as data storage for MapTo-
gether. It is however what is done for the StreetComplete project, where the type of quest
is recorded in the changeset tags, and a service called sc-statistics-service1 parses the
changesets and keeps track of user scores and achievements. MapTogether makes even more
use of social features and has the option to opt-out of social features entirely, which means
a design where the client informs the server about new changes manually, makes for more
client-controlled handling of the social service.

To facilitate this, we create a Leaderboard Manager in the server component on the MapTo-
gether servers and a Leaderboard Client in the maptogether api component on the phones.

4.2.8 Quest-Solver

The Quest-Solver is the subsystem that takes care of when the user answers a quest. Since
we made the client inform the MapTogether server of the solved quests, it might seem
logical that the MapTogether server is responsible for telling the OpenStreetMap servers of
the changed map-data. However, as the user can opt-out of the social features, it needs to
be able to tell the OpenStreetMap servers of changes without talking to the MapTogether
servers. To avoid the need for both the client and MapTogether servers to communicate with
OpenStreetMap about map-data, we can give the complete responsibility for communicating
about map-data to the client.

As such we create a Quest Solver subsystem in the client component on the phones, which
talks with the Map-Data Client subsystem.

4.3 Connecting Devices

We need to connect user’s devices in order to implement several features. For example,
when creating an activity, users need to invite other nearby players. The connection can be

1https://github.com/streetcomplete/sc-statistics-service

44

4.3. Connecting Devices Aalborg University

made locally between nearby devices by utilising the Bluetooth antennas built into almost
all modern mobile phones or via an internet connection, either peer to peer or client-server.
As mentioned in Section 4.1, we want to minimise the workload of the server, and therefore,
we explore the options for making the devices connect through Bluetooth.

Most modern phones have a dual-mode module that enables them to communicate with
both devices using Bluetooth Classic and devices using Bluetooth Low Energy (BLE) [21].
Since we are implementing the MapTogether application using the Dart framework Flutter,
we look at some ready to use Flutter libraries for working with Bluetooth. Examples of these
are flutter serial bluetooth2 and flutter blue3. These are different Flutter libraries that are
wrappers around the native iOS and Android Bluetooth libraries. Of course, more Flutter
Bluetooth libraries exist, but because Flutter is a new framework, many libraries support
only iOS or Android and not both.

One fundamental difference between the mentioned libraries is that flutter serial bluetooth
uses Bluetooth Classic, and flutter blue uses Bluetooth Low Energy (BLE). However, Blue-
tooth Classic devices communicate, only when they are paired beforehand, requiring the
users of MapTogether to close the app and pair their devices. This becomes tedious. As
searching for a username would be faster. This means that Bluetooth Classic and thereby
flutter serial bluetooth are not applicable for use in MapTogether because it becomes more
tedious to add players, than by searching for usernames. We will instead restrict us to
explore BLE and flutter blue in further details.

The BLE protocol differentiates between two types of devices, namely peripheral devices
and central devices. The peripheral devices are typically constrained devices that need to
conserve energy, and the central devices typically have more processing power and memory.
An example of this could be a smartwatch as a peripheral device and a mobile phone as
a central device. However, most Android and iOS phones support switching between pe-
ripheral and central devices, and this is possible programming-wise through each platform’s
respective native Bluetooth libraries.

For the MapTogether, we need the phone, which creates an activity, to be a peripheral device
and the phones searching for an activity to be central devices. However, the flutter blue
library only supports central mode, meaning that we can not rely solely on flutter blue,
since we need to switch between the modes to connect the devices. It turns out that only
a single BLE flutter library that supports peripheral mode exists4, and it has only limited
support for iOS, maybe due to Flutter being a relatively new framework. Therefore, we
have to use something else or develop a BLE flutter library that supports both peripheral
and central device modes.

After investigating different possibilities, we discovered Google Nearby Messages API 5,
which we found suitable as an alternative to Bluetooth even though it requires internet
to function. Google Nearby Messages is an API to publish and subscribe to small messages
between internet-connected devices. It is well-suited because it does not require any pairing
of the devices, it is available for both iOS and Android, and the devices are not required
to be on the same network. The Google Nearby Messages API discovers nearby devices by
utilising Bluetooth Low Energy, WI-FI, and near-ultrasonic audio to communicate a unique-
in-time pairing code and then communicate this to the Google servers, which informs the
client if there are any published messages from the device which transmitted the pairing
code. Since the Google Nearby Messages API uses sound, which cannot go through walls,

2flutter bluetooth serial: https://pub.dev/packages/flutter_bluetooth_serial
3flutter blue: https://pub.dev/packages/flutter_blue
4flutter ble peripheral: https://pub.dev/packages/flutter_ble_peripheral
5https://developers.google.com/nearby/messages/overview

45

https://pub.dev/packages/flutter_bluetooth_serial
https://pub.dev/packages/flutter_blue
https://pub.dev/packages/flutter_ble_peripheral
https://developers.google.com/nearby/messages/overview

Group SW716F20 4. Implementation

it is more like when humans are looking for nearby players to discover other players. Thus,
only other players whom the player can see in real life are found by the player’s phone.

Google Nearby Messages sounds like a promising technology to use. As we did for Bluetooth,
we start by exploring Flutter libraries compatible with Google Nearby Messages. However,
it becomes apparent that Google Nearby Messages is not very popular. We are only able
to find a few, and according to their documentation, most of these only work with An-
droid. Therefore we explore the possibility of developing a Flutter library for Google Nearby
Messages API ourselves.

Flutter libraries that call native code, like functionality from Google Nearby Messages
API, require method channels, making it possible for cross-platform Flutter code to invoke
platform-specific functions written in other programming languages. We start by creating
the Android part of the library. Working with Google Nearby Messages, we discover prob-
lems getting the API to transmit any messages. We searched for other projects using Google
Nearby Message API in order to get recent successful examples. We discover a project
developed by the Google Team. However, unfortunately, this project does not work either.
Since we cannot find recent usages or examples that work, we give up on using Google Nearby
Message API. It seems that the API is outdated.

We decide to develop the feature of finding nearby players by using internet communication
to a central server instead. The users publish their location to a central server and then
receive a list of nearby players from the server.

4.4 Log-In Handler

In the following section we describe how the authentication of both the OpenStreetMap
servers and the MapTogether server. OpenStreetMap supports both OAuth 1.0 and OAuth
1.0a for authentication, although 1.0 is only supported for legacy applications. OAuth allows
the client to access resources on the server, and authorise the third-party application. This
allows for authentication of the user in our application6. The OAuth terminology varies
dependent on who uses the authentication method. In OpenStreetMap the terminology
differs from RFC5849, and uses the terminology from the original community specification,
and we does also use the original community specification when talking about OAuth.

In the original specification a consumer is simply just a HTTP client, and a service provider
is an HTTP server which in our case is the OpenStreetMap server. The consumer token and
consumer secret is assigned by OpenStreetMap to uniquely identify the application. The
temporary token is used for the initial authentication and is only available for a limited
time frame. This does not give access to the resources on the server and cannot be used
for anything but authentication. The access token is a long lived token, and the temporary
token is destroyed when the access token is created. The access token have to be included
in every request for resources that are authenticated.

When the client request temporary access, it sends the consumer token to identify which
application needs to get access to the OpenStreetMap server. The server checks if the
consumer token is valid, and sends the temporary access token back to the client. The
client then shows the login page in an embedded webbrowser, and the user have to login and
grant OpenStreetMap access to the MapTogether application. The server then checks the
request to see if the consumer key, temp token and verifier are all valid, and makes a valid
access token if they are. This token is then returned to the client. The received access token

6RFC for OAuth 1.0: https://datatracker.ietf.org/doc/html/rfc5849

46

https://datatracker.ietf.org/doc/html/rfc5849

4.4. Log-In Handler Aalborg University

Figure 4.7: Sequence diagram of a client logging in to OpenStreetMap and being verified,
and requesting data from the MapTogether server.

47

Group SW716F20 4. Implementation

and secret is saved in the devices persistent memory, such that it can be used whenever a
OpenStreetMap change is made.

When the client has received the access token and secret from OpenStreetMap, then it sends
a request to the MapTogether server to create a new user (or replace an existing one). The
client provides the server with their user Id, access token and secret and their consumer
token and secret. The server then use the access and consumer tokens and secrets to sign
a request for the user data from OpenStreetMap. If the user information is received, then
the server will store (or overwrite) the user Id, name and access token in the database.

When the client has retrieved an access key from OpenStreetMap and the MapTogether
database has stored the user information with the access key, then the client can request
personal information from the MapTogether server. As shown in Fig. 4.7, the client sends a
request to an endpoint in the server. The server need to know the Id of the user that makes
the request, and an access token to verify that the client is requesting data for the user that
they are logged in with.

1

2 %aid = {{db}}. query_one? "SELECT userid FROM users ⤦
↪WHERE access = $1", %key , as: Int64

3 http_raise 401, "User #{%id} does not have the given ⤦
↪ access token" if %aid.nil?

4 http_raise 401, "Authenticated user does not have ⤦
↪permission for this (#{%id} != #{%aid}" if %id != %aid

5 end

6

7 put "/user/:id" do |env|

8 id = env.params.url["id"]. to_i64

9

10 vals = env.request.headers["Authorization"]. split(" ⤦
↪")

11 http_raise 400, "Both access and client keypairs are ⤦
↪ required" if vals.size < 5

12 atype , key , secret , ckey , csecret = vals

13 http_raise 400, "Authentication type needs to be ’ ⤦
↪Basic ’" if atype != "Basic"

Listing 4.1: Macro in Crystal to verify that the id matches the access token in the header
of a request.

As shown in Listing 4.1, the server first checks for errors in the header of the request. The
header should be on the form "Basic <Access Key>". On line 12 the server tries to retrieve
a user Id (%aid) from the database using the access token. If %aid is null, then it means that
no user in the database has the given access token. If %aid is not equal to the provided user
Id, then it means that the client is requesting information that they do not have permission
to.

4.5 Database and Server

In this section, we design and implement the server and database, in accordance with the
classes, events and functions previously outlined in Section 3.5 as well as the user interface
designed in Section 3.6.

48

4.5. Database and Server Aalborg University

user

userID

name

contributed
1

follows
M

unlocked

N

isMember

N

invited

N

contributionType contributionTypeID

type

contribution

contributionID

changeSet

score

dateTime

hasType

N

achievement

achievementID

name

description

group groupID

name

1
N

N

M

M
M

K

Figure 4.8: Entity relationship diagram of entities in the MapTogether

4.5.1 Database and Server Design

To design the database, we must decide what the responsibility of the database is. The
database should contain the social data necessary for the application to function. We want
the database to contain information about the users’ followers, groups and achievements.
The database should also contain contributions’ points and type, to keep track of what kind
of different contributions each user has made. The type of contributions could be used to
unlock specific achievements.

In order to visualise and describe the relations within the database, we draw the entity
relationship (ER) diagram in Fig. 4.8. This diagram describes the entities in the database,
their attributes as well as the relations between them.

We have the following entities: user, contribution, contributionType, achievement and
group. A user has an ID and a name. We want the user to be linked to a profile in
OpenStreetMap, so the ID should be the same as their OpenStreetMap profile. The user
name should also be a copy of their OpenStreetMap user name. A user contributes a

49

Group SW716F20 4. Implementation

number of contributions. A contribution has an ID, a changeset that corresponds with an
OpenStreetMap changeset ID, a score and a timestamp. The score is the number of points
rewarded to the user. A contribution also has a type. A contributionType has an identifi-
cation and a name of the type. The idea behind types is to be able to award achievements
depending on user activity.

A user unlocks a number of achievements. An achievement has an ID, name and description.
A user is also member of any number of groups. Groups just have an ID and a name. A
user can also receive an invitation from another user to a certain group.

Based on the entity relationship diagram, we form the following collection of relation
schemas.

users ∶ {userID, name}
contributionType ∶ {contributionTypeID, type}
contributions ∶ {contributionID, userID → users(userID),

type→ contributionTypes(contributionTypeID), changeSet, score, dateT ime}
achievements ∶ {achievementID, name, description}
groups ∶ {groupID, name}

unlocked ∶ {userID → users(userID), achievement→ achievements(achievementID)}
follows ∶ {follower → users(userID), followee→ users(userID)}
hasMember ∶ {groupID → groups(groupID), userID → users(userID)}
invitations ∶ {invitationID, host→ users(userID), invitee→ users(userID),

group→ groups(groupID)}

The database runs on a server, accessible through endpoints via HTTP requests as a REST
API. We choose this setup because the information is always requested by the client and
response time on the endpoints is not critical for the app. These endpoints are used for
accessing the database by performing SQL queries.

Endpoints

We developed the wrapper around the API in Dart, using the language constructs for asyn-
chronous programming, such that we can have multiple different operation running while
waiting for some operations. This also makes it easier in development since the Client does
not need to handle JSON, but simply other Dart objects.

We specify some endpoints in order to access the data from the database. To access data
about a user, we set the endpoint: /user/<id>. This endpoint is used for accessing a user by
their id, with a GET request. The id is a parameter given in the URL. The response should
include information about achievements, followers and scores in different time frames. The
same endpoint allows for adding a user with a PUT request. The data sent with the PUT
request have the same information structure as one would receive from the GET request.

We also need an endpoint to add or remove follow relations between users. We use the
endpoint: /user/<follower>/following/<followee>. A HTTP PUT request adds the
relation that the user with id follower now follows the user with id followee. A corre-
sponding DELETE request will remove said relation if it exists.

50

4.5. Database and Server Aalborg University

We also need to be able to add new contributions. To do this, the client can send a POST
request with the needed data to the endpoint: /contribution.

Since we have multiple types of leaderboards, we create endpoints for each of them by using
URl parameters. Leaderboards are categorised into three time frames: all time, monthly and
weekly. For each category we have a global and a personal leaderboard. The global leader-
board includes all users globally. The personal leaderboard is user specific, and includes
a user and all the users they follow. The leaderboards can be accessed by a HTTP GET
request to the endpoint: /leaderboard/<time_frame>/<global|personal>/<id>.

4.5.2 Database and Server Implementation

We implement the designed server and database from Section 4.5. First, we set up the
database management system. For this we use PostgreSQL7. We initialise the DBMS with
UTF-8 encoding in order to allow special local characters. In Section 4.5 we specified the
tables and their attributes, we create them as shown in Listing 4.2.

1 CREATE TABLE IF NOT EXISTS users (

2 userID bigint PRIMARY KEY ,

3 name varchar (255),

4 access varchar

5);

6

7 CREATE TABLE IF NOT EXISTS contributionTypes (

8 contributionTypeID SERIAL PRIMARY KEY ,

9 type varchar

10);

11

12 CREATE TABLE IF NOT EXISTS contributions (

13 contributionID BIGSERIAL PRIMARY KEY ,

14 userID bigint REFERENCES users(userID),

15 type integer REFERENCES contributionTypes(⤦
↪contributionTypeID),

16 changeSet bigint ,

17 score integer ,

18 dateTime timestamptz

19);

20

21 CREATE TABLE IF NOT EXISTS achievements (

22 achievementID BIGSERIAL PRIMARY KEY ,

23 name varchar ,

24 description varchar

25);

26

27 CREATE TABLE IF NOT EXISTS unlocked (

28 userID bigint REFERENCES users(userID),

29 achievement bigint REFERENCES achievements(achievementID ⤦
↪),

30 PRIMARY KEY (userID , achievement)

31

32);

33

34 CREATE TABLE IF NOT EXISTS follows (

7https://www.postgresql.org

51

https://www.postgresql.org

Group SW716F20 4. Implementation

35 follower bigint REFERENCES users(userID),

36 followee bigint REFERENCES users(userID),

37 PRIMARY KEY (follower , followee)

38);

39

40 CREATE TABLE IF NOT EXISTS groups (

41 groupID BIGSERIAL PRIMARY KEY

42);

43

44 CREATE TABLE IF NOT EXISTS hasMember (

45 groupID bigint REFERENCES groups(groupID),

46 userID bigint REFERENCES users(userID),

47 PRIMARY KEY (groupID , userID)

48);

Listing 4.2: SQL code for creating the tables specified in Section 4.5

We use bigint (64 bit integers) for identification attributes, and integer (32 bit integer) for
smaller numbers that are going to be set by the application. Attributes of type varchar are
of unspecified length, except for the users’ names, which are defined by the users themselves
and has a maximum length of 20 characters.

Leaderboards are not saved as relations in the database, so in order to get a leaderboard we
need to combine users and contributions and sum the scores. We know that clients could
request data on the leaderboards quite often. Because of this we use materialised views to
save the global leaderboards. One of the materialised views can be seen in Listing 4.3. The
materialised views provide better performance, because the server does not have to compute
the leaderboard at each new request. The server updates these materialised views with a
interval of one minute, such that the leaderboards updates.

1 CREATE MATERIALIZED VIEW leaderboardWeekly AS

2 SELECT u.userID , u.name , COALESCE(s.score , 0) AS score

3 FROM (

4 SELECT userID , SUM (score) AS score

5 FROM contributions

6 WHERE dateTime BETWEEN date_trunc(’week’, ⤦
↪CURRENT_DATE) AND CURRENT_DATE

7 GROUP BY userID

8) AS s

9 RIGHT OUTER JOIN

10 users AS u

11 ON u.userID = s.userID

12 ORDER BY score DESC;

Listing 4.3: A materialised view of the global weekly leaderboard.

To implement the server endpoints we use Kemal8, a framework for developing REST API’s
and more. Kemal is written in Crystal9, a primarily functional and object-oriented language.
We use JSON for HTTP POST parameters and all responses from the server.

We implement the server as a REST API, which means that the server is stateless, and
requests are always processed individually with the same procedure. This also makes the

8https://kemalcr.com
9https://crystal-lang.org

52

https://kemalcr.com
https://crystal-lang.org

4.5. Database and Server Aalborg University

server highly scalable. The clients send HTTP requests to the server, which the server then
processes and queries the database accordingly.

We setup the endpoint /leaderboard/<time_frame>/personal/<id> to allow a client to
request personal leaderboard data for all time, monthly or weekly time frames. The imple-
mentation of handling a HTTP GET request on this endpoint is shown in Listing 4.4. This
endpoint has two URL parameters, and responds with a JSON object that is an ordered list
of users with a name and id, and a score.

1 # Retrieve all users ’ id, name and score

2 get "/leaderboard /:time/global" do |env|

3 time = LeaderboardType.from_s env.params.url["time"]

4

5 string = JSON.build do |json|

6 POOL.using_connection do |db|

7 db.query Queries.leaderboard(RankType :: ⤦
↪Global , time) do |rows|

8 Leaderboard.new(rows).to_json json

9 end

10 end

11 end

12

13 env.response.content_type = "application/json"

14 string

15 end

Listing 4.4: Crystal implementation of HTTP GET request on the personal leaderboard
endpoint.

The query we use to get the leaderboard data (line 7 of Listing 4.4) is returned from a
function shown in Listing 4.5. The function takes two parameters, RankType (global or
personal) and LeaderboardType (all time, monthly or weekly). The function queries the
correct materialised view depending on the leaderboard type. If the the rank type is global,
the query is for all users, if the rank type is personal, then the query is for followed users.
The SQL query selects all attributes from a materialised view. We declare most queries as
functions with parameters in a Cystal module called Queries.

1 def leaderboard(r : RankType , l : LeaderboardType)

2 if r == RankType :: Global

3 "

4 SELECT *

5 FROM #{l.to_leaderboard}

6 WHERE score != 0

7 "

8 else

9 "

10 SELECT *

11 FROM #{l.to_leaderboard}

12 WHERE EXISTS (

13 SELECT 1

14 FROM follows

15 WHERE userID = $1 OR (follower = $1 AND ⤦
↪followee = userID)

16)

17 "

53

Group SW716F20 4. Implementation

18 end

19 end

Listing 4.5: SQL query for getting a leaderboard. The first parameter is either global or
personal, the second parameter is the time frame converted to the name of a materialised
view (all time - “leaderboardAllTime”, monthly - “leaderboardMonthly” or weekly -
“leaderboardWeekly”)

On line 8 of Listing 4.4 a new instance of the Leaderboard class is created and the method
to_json is called on the new instance. The constructor of Leaderborad takes the result of
a query with three columns: user id, name and score. The to_json method takes a JSON
Builder with which it builds a JSON object like the example shown in Listing 4.6.

1 [

2 {

3 user: {

4 id: <user id >,

5 name: <user name >

6 },

7 score: <1. place score >

8 },

9 ...

10]

Listing 4.6: Example of the response a client will receive from a HTTP GET request to a
leaderboard endpoint. A sorted list of pairs of a score and a user with an id and name.

The other endpoints specified in Section 4.5.1 are implemented the same manner. We use
up to two URL parameters for some endpoints and a JSON object as a body parameter for
uploading advanced elements.

4.6 OpenStreetMap API Wrapper

In the following section, the design of the communication between the OpenStreetMap server
and the client is outlined. This design is made according to functions in Section 3.5, and
the target audience, from Section 3.1 whom wishes to contribute to OpenStreetMap10. We
build a wrapper around the communication such that the calls to the API are handled in a
separate part of the project. This allows the Client and User Interface to abstract away the
direct information regarding the endpoint, and thus we only need to handle Dart classes on
the Client.

4.6.1 Endpoints

To access data from the OpenStreetMap servers, we develop a wrapper around the Open-
StreetMap API. The endpoints we need to support for our application are map, user and
changeset. However, the wrapper also supports other OpenStreetMap endpoints such that
other developers can use it in the future. To gather the data about the currently logged in
user, the endpoint: /api/0.6/user/details is used. The response returns the information
shown from Listing 4.7.

10https://wiki.openstreetmap.org/wiki/API_v0.6

54

https://wiki.openstreetmap.org/wiki/API_v0.6

4.6. OpenStreetMap API Wrapper Aalborg University

1 "user": {

2 "id": 11321 ,

3 "display_name ": "maptogether -test",

4 "account_created ": "2021 -04 -26 T11 :59:10Z",

5 "description ": "",

6 "contributor_terms ": {

7 "agreed ": true ,

8 "pd": false

9 },

10 "roles ": [],

11 "changesets ": {

12 "count ": 0

13 },

14 "traces ": {

15 "count ": 0

16 },

17 "blocks ": {

18 "received ": {

19 ...

20 }

21 },

22 "languages ": [

23 ...

24],

25 "messages ": {

26 "received ": {

27 ...

28 },

29 "sent": {

30 "count": 0

31 }

32 }

33 }

Listing 4.7: The response from a GET call to the user endpoint

An abbreviation of the user information is also useful in our server, to show the different
information regarding the logged-in user as seen on the Fig. 3.13a. An example of this is
users shown on the leaderboards and the users seen in the follow-list. For these users, we do
not require every piece of information about the user, only a few data-points such as their
score, name, id and profile picture. For this reason we make a call to retrieve an abbreviated
user only containing these items, to minimise the amount of data sent.

To gather data regarding nodes, ways, and relations, the endpoint
/api/0.6/map?bbox=left,bottom,right,top is used. The endpoint returns every node,
way and relation within the square constructed by the four corners, given as a parameter to
the endpoint, where an abbreviation of this can be seen on Listing 4.8. This allows for the
construction of multiple different quests, with a single call to the endpoint.

55

Group SW716F20 4. Implementation

1 {

2 "elements ": [

3 {

4 "type": "node"

5 ...

6 },

7 {

8 "type": "way",

9 ...

10 },

11 {

12 "type": "relation",

13 ..

14 }

15]

16 }

Listing 4.8: Abbreviated representation of response to the map endpoint

Writing data to the OpenStreetMap servers requires user authentication, and how the au-
thentication work is mentioned in Section 4.4. Aside from the argument mentioned in
Section 4.4, another reason for authentication is also to minimise the number of bad actors
interacting with the server. To insert a new object in the OpenStreetMap server, when
the user already is authenticated, the object has to be encapsulated in a changeset. Each
changeset has a comment describing the encapsulated content. The changeset flow can be
seen on Fig. 4.9.

Figure 4.9: An example of a changeset used for changing already existing node11

We close the changeset immediately after changing an element, this means that the quest
related to the element will be answered and removed from the quest shown in the client.

56

4.7. Client Aalborg University

However other users will not be able to see the quest on their device when they reload the
quests.

4.7 Client

We have multiple options for the client implementation, which is the mobile application used
by the users. One option is to develop native applications, but because MapTogether must
support both iOS and Android we have to implement and maintain two different native
applications, one for Android and one for iOS. Many companies select this approach when
developing applications because it is possible to achieve the best possible performance for
the specific platform. Also, the challenge of maintaining multiple apps is minimal when the
applications mainly consist of UI that fetches data from a server that runs all the business
logic. In this case, the business logic is only implemented once since it is not dependent
on the native platforms. However, as mentioned in the architecture section, we want the
subsystem responsible for finding the quests to run locally on the client. Therefore, we would
need a quest system for the Android platform and another one for the iOS platform, if we
chose the native approach. Instead, we explore possibilities for cross-platform development
so we only have to develop and maintain a single codebase. There are multiple cross-platform
options like Xamarin, React Native and Flutter. Flutter provides some convenient features
like hot-reload and hot-restart, and we, therefore, implement the client side of MapTogether,
using the Dart framework Flutter.

UI elements in Flutter are built using Widgets. These are ways for us to declare and
construct graphical elements for the UI, in a condensed yet mutable manner. Widgets are
both responsible for displaying information but also setting up the design and layout of
specific pages. For example, columns, rows and padding in Flutter, are all represented
through widgets. To pass information between the different screens and widgets in Flutter,
as well as fetch data from our server and OpenStreetMap. We use a mix of futures and
providers.

4.7.1 Futures

When the client needs to read or write data from the server, said data is not readily available,
without first making a call to the server. Likewise, it is not always certain that MapTogether
will be able to retrieve the data, and therefore needs to be able to handle potential errors
which might occur while fetching the data. For this reason, we use the future property
of Flutter. A future is effectively an asynchronous method for telling a widget that the
corresponding piece of data associated with the future, will be provided at a later point
in time. We then send a fetch request for the data to our server and the future awaits a
response. Through a widget called a FutureBuilder12, we can then build specific widgets on
the screen, with varying contents depending on the response from the server. For example,
while the data is being fetched a loading screen appears. Depending on whether the data
is then correctly fetched, a widget containing either the correct information or an error
message is displayed.

4.7.2 Provider

In order to pass data between screens and widgets in MapTogether, we make use of providers13.
Providers are a means of passing information between screens and widgets in a Flutter
project. This ensures that all UI elements dependent of data with the associated provider
are updated in both the back and front end of the program. Ordinarily, one way to do it

12https://api.flutter.dev/flutter/widgets/FutureBuilder-class.html
13https://pub.dev/packages/provider

57

Group SW716F20 4. Implementation

KMM
Library

Flutter
App

iOS
Native

Android
Native

(a)

KMM
App

Flutter
Module

iOS
Native

Android
Native

(b)

Figure 4.10: The two way to structure a combined Flutter/KMM project.

in Flutter is by creating so-called stateful14 widgets, whose state then have to be manually
updated whenever a change in the data set occurs, for it to be reflected in the UI.

4.7.3 Quest System

From Section 3.2, we know that MapTogether must provide the functionality to maintain
existing map data by adding and updating tags on nodes, ways and relations. This was
further specified as the two subsystems Quest-Finding and Quest-Solving in Section 4.1.
StreetComplete already has a system for finding and solving quests and since StreetComplete
is an open-source project, their quest system can legally be used in MapTogether. These
quests could even be solved during social waypoint activities, as we proposed in Section 3.3.
The StreetComplete quest system is written in Java, which is not directly compatible with
the Dart/Flutter system chosen in Section 4.7. To be able to use the already developed and
maintained quest system, we will figure out a way to combine Java and Dart code.

The only available way is using Kotlin Multiplatform Mobile (KMM), which allows using
Kotlin code for logic on both Android and iOS. Since Kotlin can interface with Java code
this means the quest system could be interfaced with on both platforms. Combining Flutter
and KMM is not a widely used approach and none of the available projects online that tries
to use it, is not functional on both iOS and Android.

We can combine KMM and Flutter two ways. We can create a Flutter app and a KMM
library (Fig. 4.10a), where the Flutter Dart code talks to the native code via Flutter Method-
Channels and the native code talks to the KMM library as if it was a native library. This
approach has the problem of the KMM Library setup that is importable in iOS not being
importable in Android and vice versa.

The second way of combining KMM and Flutter is by creating a KMM App and a Flutter
module as seen in Fig. 4.10b. The communication between native code and Kotlin is almost
seamless like if it was all native code, and the communication with Flutter being done via
the aforementioned MethodChannels. The big problem with this setup is that setting up an
KMM-driven Android native app, seems to exclude proper import of the flutter module.

None of the two ways have any working examples available, and the authors spent consid-
erable effort trying to get it set up, but the authors were unable set up a working project,
that allows combination of KMM and Flutter.

Since we are unable to use KMM in MapTogether and therefore cannot use StreetCompletes
quests, we develop a new quest system in Dart, as it should be part of the mobile app
(Client) for the reasons mentioned in Section 4.1. We prioritise regular quests instead of the
survey quests mentioned in Section 3.3.4, as most other features of the application depend

14https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html

58

4.7. Client Aalborg University

on either StreetComplete style maintenance quests or survey quests being implemented, as
seen in the dependency graph in Fig. 3.9. Maintenance quests are chosen over surveying
since surveying quests will not cover the mentioned must-have requirement of maintaining
existing data. The quest system needs to find quests in OpenStreetMap data as illustrated
in Fig. 4.11.

Map Data Quest-Finder Quests

Figure 4.11: The Quest system input and output

The quest system that we develop is a proof of concept system that only includes two
types of quests: a BackrestBench quest, asking the user if a bench has a backrest, and
a BuildingType quest, asking the user what type of building a building is, for example,
a school or commercial building. We implement the quest system such that new quests
added in the future can easily be integrated by inheriting and implementing the relevant
functionality from an abstract class.

The quest system consists of Quests and QuestFinders. The class diagram for these is
shown in Fig. 4.12. All quests have some common elements in the abstract class Quest. The
common elements consist of an OpenStreetMap data element (a node, relation or way), a
position, an icon, a changeset comment (describing the change to the OpenStreetMap data),
and the question that the user should answer. All quest types should inherit the Quest class.
The two quests that we implement are of the SimpleTagQuest type. What identifies quests
of this type is that solving them means adding or updating a simple tag. For example, in
the BackrestBench Quest, either “yes” or “no” should be added to the backrest tag for the
given bench. Thus possibilities is a list of the possible values for the specific tag that is
updated.

Figure 4.12: Quest system class structure

To display the Quests on the map and the pop-ups with the question and answers, we define
a simple marker-widget showing the Quest icon on the map, and we implement a pop-up

59

Group SW716F20 4. Implementation

for each type of Quest. For example, for the SimpleTagQuest, we create a pop-up showing
the question with a scrollable list of buttons, one for each possible answer.

The interface QuestFinder provides functionality to find the different type of quests when
given OpenStreetMap data. A QuestFinder has two methods, applicable and construct ⤦
↪. The applicable method takes an OpenStreetMap data element and checks if the given
Quest applies to that element. construct calls the constructor of the corresponding quest-
type of the specific QuestFinder instance. With the QuestFinder and Quest defined, we
can find all quests in an area by testing if each Quest applies to the area’s elements.

60

Chapter 5

Evaluation

In this we chapter examines the performance of MapTogether. We also discusses the ful-
filment of the requirement to conclude whether the implementation is sufficient and if the
implementation fulfils the problem statement. Lastly, we propose different features which
could enhance the implementation.

5.1 Performance Testing

To assess the quality and scalability of the MapTogether prototype, we conduct several stress
tests on the MapTogether server. For the stress test, we make about 50 requests per second
for 5 minutes, with a wind up and down of about 30 seconds. The requests are HTTP
GET requests on the user endpoint to retrieve user “1”. We conduct a stress test where the
requests come from Frankfurt in Germany and one where the requests come from Ashburn
in the USA. The server is hosted in Helsinki in Finland, so the response time to Germany
should be faster than to the US.

A summary of the results is shown in Table 5.1. The table shows the response times (average,
minimum and maximum) and the standard deviation of the response times. The P99 value
tells us what 99% of response times will be at most. Fig. 5.1 and Fig. 5.2 shows the response
times (minimum and maximum) and the request rates during the tests.

Client Location Avg. RT. Min. RT. Max RT. Std. Deviation P99
Germany 90 ms 38 ms 357 ms 29 ms 186 ms

USA 158 ms 107 ms 337 ms 26 ms 256 ms

Table 5.1: Results of two stress tests, sending about 50 requests per second from Ger-
many and USA. The test measured response time (average, minimum, maximum), and the
standard deviation. 99% of response times are below the P99 value.

The results shows us that the response time, as expected, depends on the location of the
clients. We can see that the server is able to handle 50 requests per second with a maximum
response time of 357 ms, with no errors or faults. It is difficult to assess how many requests
realistically would happen every second, if MapTogether were released. In order to make a
valid estimation, we would have to do an experiment to see how often a user would request
the server while using the application. We would think that handling 50 requests per second
is pretty good but might not handle it well if something would cause a large portion of the
player base to use it simultaneously. Because of the relatively small number of contributors,
we think that handling 50 requests per second is enough. Not everyone will be using the
application simultaneously due to different time zones, and not everyone will make requests
at the same time.

61

Group SW716F20 5. Evaluation

Figure 5.1: Graph showing the request rate and response time (minimum & maximum) in
the course of the 5 minute long stress test. The request were sent from Frankfurt, Germany

Figure 5.2: Graph showing the request rate and response time (minimum & maximum) in
the course of the 5 minute long stress test where the request was sent from Ashburn, US.

To increase the responsiveness of the server, we could use replication to scale horizontally.
If we replicated the server itself, the clients’ requests should be evenly distributed between
the servers. This is easy to do because the server implements a REST API. If we did this we
could also replicate the database itself. This would require some protocol for synchronisation
that ensure correctness across the database replications.

5.2 Discussion

In this section, we evaluate our work in this project and results on the problem statement
from Section 2.7 and requirements from Section 3.2. We will also describe and evaluate our
development process.

5.2.1 Fulfilment of Requirements

Requirement 1 aims at the core functionality of the application and is supported through
the quest feature implemented in Section 4.7.3. We implemented two simple quest types,
but more quests must be implemented for the application to be complete. Similar quest
types are trivial to add because the implementation is almost the same.

We incentivise users to contribute to OpenStreetMap by rewarding points for completing
quests. This could potentially incentivise users to complete quests quickly, and possibly
answering dishonestly, going against Requirement 2. We have not implemented checks in

62

5.2. Discussion Aalborg University

the application to verify if a contribution is legitimate or not. However, we designed the
activities so that users should not be pressured on time, because it could incentivise users
to recklessly answer quests they are not sure about.

The user interface has been designed for adding POIs as shown on Fig. 3.11. Our Open-
StreetMap API wrapper also implements this feature. However, we have not implemented
this functionality in the backend of the client yet. This means that the functionality to
address Requirement 3 is missing.

We fulfil the Requirement 5 by having multiple different leaderboards that have time seg-
ments, such as weekly leaderboards. However, the designed achievement feature is not
implemented.

We partially have solved Requirement 6 by implementing following, follower list and leader-
boards. However, we do not incentivise the user to invite new people to contribute, beyond
the incentivisation of being able to compete with them on the MapTogether leaderboards.

We fulfil Requirement 4 with a single client codebase thanks to Flutter. The application
works on both Android and iOS. We also achieve Requirement 7 through the use of Flutter.
With Flutter, we develop the Android and iOS versions simultaneously and with similar user
interfaces. There are very slight differences such that the application meets the different
design practices of iOS and Android. An example is the “go-back arrow” on iOS is just an
angle as opposed to an arrow with a tail on Android.

Offline capabilities, mentioned in Requirement 8, is also not addressed. However we planned
on how to achieve it in Section 4.1. The data is always retrieved from the web and never
stored locally.

5.2.2 Work Process

In the first part of the project, we, as students, had many small time slots to work on the
project interrupted by lectures. We planned the tasks in increments of a week to keep an
overview between the lectures. When planning the workload for a week, we used a kanban
board, which we also used in our daily stand-up meetings. This helped us get an overview
at the beginning of each day. In the final weeks of the project, we started to plan more than
a week ahead because the tasks were more easily defined, and we had a clearer idea of what
we had to do. This worked well near the end because we had no lectures (less interruption)
and thus it was easier to keep track of the plan.

In each sprint, everyone had a specific task to begin with, and when done they could pick
any from the backlog to continue with. Once we got closer to the hand-in date, all tasks in
the sprints were assigned to a person, so that everyone knew exactly what they had to do
throughout a given sprint. Tasks would mainly consist of either researching a topic, writing
a part for the report or creating a specific feature for the implementation. The latter two
of which we will more closely examine the work process for. Whenever a part of the report
had been written, it would be assigned as ”ready for review”. Once reviewed/proof-read by
another member of the group, it would be either marked as completed or changes would be
requested to the initial author.

In regards to our implementation, we used git as a version control system. Through git, we
practised continuous integration, in an effort to distribute the programming workload. While
still ensuring that no single branch would remain without integration to the master for a
prolonged period. Whenever a new feature was to be implemented, we made a feature branch
for it in our git repository. The purpose of using feature branches was to give a highly-focused

63

Group SW716F20 5. Evaluation

purpose to each branch in the repository. This ensured that the purpose, and by extension
lifetime, of a given branch, was readily apparent from its creation until integration to the
master. Features were kept as small in scope as possible, to once again ensure continuous
integration in the project. The development process we used for implementation was great,
since it opened up for us developing independent features in parallel.

Once the feature of a given branch was completed, a pull request would be made to the
master branch. This would then prompt the other members of the project to initiate a
code review of the feature, before integration to the master. Upon review, changes would
then either be requested for the initial owner of the branch, upon the completion of which
another review would initiate, or the pull request would be accepted, integrating the feature
into the master branch.

5.3 Conclusion

In this section, we summarise and conclude the work and results of the project. We anal-
ysed different aspects of contributing data to OpenStreetMap and what kind of problems
become apparent when the data relies solely on volunteers. We analysed existing software
for contributing to OpenStreetMap and gamification elements to motivate different types of
players.

The analysis ended with a problem statement from which we described some people that
could be a potential audience. From their perspective, we formulated requirements for a
mobile application.

We designed the core game loops and features to motivate different users. We used object-
oriented analysis and design to analyse and model the problem domain and to identify and
plan functions of the application domain. We used those functions to design an interface to
support them.

After the design, we mapped the architecture of different components which would be needed
and implemented the base features. We focused on implementing the minimum viable prod-
uct as described in Chapter 4, but also on implementing what would provide more learning
value for us. This is instead of focusing on what would be most important if the application
were to be deployed.

Firstly, we implemented the client, a cross-platform mobile application and a quest system
with two quest types. Secondly, we implemented an API for OpenStreetMap to download
and upload map data and contributions. Lastly, we implemented a database and a server
to host and manipulate the database and an API that the client use to access the server.

The result is a prototype of MapTogether. The app implements the base features we wanted
it to have, and all components work together in accomplishing the tasks that we imple-
mented. Many features are still yet to be implemented before MapTogether is a complete
product, for example, waypoint activities and surveying quests. Nevertheless, we are satisfied
with what we accomplished and learned during the analysis and development of MapTo-
gether and believe it has the potential to be improved and become a very usable alternative
to StreetComplete and a complement to other contribution methods.

64

5.4. Future Works Aalborg University

5.4 Future Works

The following section describes the features that need to be implemented in order to complete
the application.

5.4.1 Verification Quests

As mentioned in the discussion in Section 5.2, the competitive aspect of MapTogether could
make users reckless and add wrong data. We could implement some kind of verification
system to compensate for this.

One way to implement this is through verification quests. A verification quest asks a user
whether some contribution of a different user is correct. The result would be noted and
using the MapTogether database we could keep track of which contributions are corrected/-
confirmed and by how many. This data could be used to measure the correction rate (the
chance that a users contribution is corrected), and possibly prioritise verification quests from
users with a high correction rate (without excluding others). The verification data could
also be used to withdraw points from users if they are consistently being corrected because
of wrong data. It is possible to make honest mistakes, and some analysis is required to
further identify how to properly implement the mechanism for withdrawing points. Another
possibility is to notify a MapTogether user that their data was corrected or confirmed. This
could be a way to let new contributors know if they made mistakes or misunderstood some
convention, or make users happy by letting them know that others agree their contribution
was good. Conversely, it could be a bad idea because a new user being corrected could make
them less motivated to continue making contributions, not to mention the verifying user
could also make a wrong correction.

The MapTogether client would analyse the OpenStreetMap changesets and choose certain
changesets for which to open verification quests mostly for recent contributions. This would
possibly requires assistance from the MapTogether database because the client would need to
know about the users’ correction rate. The user cannot verify their own contributions. Com-
pleting a verification quest would notify the MapTogether server which would in turn note
the confirmation/correction. It might also be possible to annotate the corrected changeset
with some label that tells us it was corrected.

5.4.2 Tile Renderer

One of the requirements is that MapTogether should work with minimal internet access.
One thing that ties into this is visualising the map data. The prototype developed in this
project always downloads the map tiles from an OpenStreetMap tile server. There are two
ways to circumvent this. Cache the tiles locally, or rendering the tiles from the raw map
data. The advantage of rendering the tiles locally is that we can visualise the tiles as we
please, however it is much more complex to implement. We could more easily use existing
renderers if any are implemented in dart. If it is too difficult to implement a renderer locally
in the client, we could host our own tile server and then cache the tiles on the client.

5.4.3 Activity Motivation Experiment

In order to identify how well activities actually motivate users, we could conduct a field
experiment. The null hypothesis of one such experiment could be: “Activities affect the
motivation of the users”. In the hypothesis, we can identify “Motivation” as the only
dependent variable, and “Activities” as an independent variable (whether activities are
available or not).

65

Group SW716F20 5. Evaluation

We can test the hypothesis with a between-group experiment, where participants are divided
into two groups, “A” and “B”. Participants in group A receive a version of MapTogether
with a working activity feature, and participants in group B receive a version without any
activity feature. All participants must participate in the experiment as small groups of
friends (2-10 people) so that they are able to map together if they want to.

The participants are tasked with using the app at least once a week for three months. Play
time and quests completed should be measured throughout the experiment. We assume that
the more time the users spend, and the more quests they complete, the more motivated they
are to use the application. After the experiment, we could ask the participants “How likely
are you to use this application again in the future on a scale of 1 to 5 where 1 is not likely
and 5 is very likely?”.

It is important that all participants get an equal introduction to OpenStreetMap and Map-
Together so that no participants receive a more motivating introduction. This also ensures
that all participants have a minimum understanding of OpenStreetMap. We should also be
aware of previous experience with OpenStreetMap because it might affect their motivation.

The result of the experiment should be an understanding of how activities affect the users’
motivation (positive, negative or non-significantly). This knowledge could be used to de-
cide whether more development resources should be spent on developing activities, or if
development should focus on other features.

66

Bibliography

[1] J. Nielsen, “The 90-9-1 rule for participation inequality in social media and online
communities.” https://www.nngroup.com/articles/participation-inequality/,
2006. Retrieved 24th of February.

[2] J. Anderson, D. Sarkar, and L. Palen, “Corporate editors in the evolving landscape of
openstreetmap,” ISPRS International Journal of Geo-Information, vol. 8, no. 5, 2019.

[3] A. Yang, H. Fan, and N. Jing, “Amateur or professional: Assessing the expertise of
major contributors in openstreetmap based on contributing behaviors,” ISPRS Inter-
national Journal of Geo-Information, vol. 5, no. 2, p. 21, 2016.

[4] A. for Data Supply and Efficiency, “Datadistribution.” https://eng.sdfe.dk/

datadistribution/, 2018. Retrieved 25th February.

[5] OpenStreetMap, “Contributors.” https://wiki.openstreetmap.org/wiki/

Contributors#Denmark, February 2021. Retrieved 25th February.

[6] E. O. System, “Satellite data: What spatial resolution is enough?.” https://eos.com/

blog/satellite-data-what-spatial-resolution-is-enough-for-you/, April
2019. Retrieved 25th February.

[7] L. Juhász, T. Novack, H. H. Hochmair, and S. Qiao, “Cartographic vandalism in the
era of location-based games—the case of openstreetmap and pokémon go,” ISPRS
International Journal of Geo-Information, vol. 9, no. 4, 2020.

[8] Manuel S Pascual, “Gis data: A look at accuracy, precision, and types of
errors.” https://www.gislounge.com/gis-data-a-look-at-accuracy-precision-

and-types-of-errors/, November 2011. Retrieved 25th February.

[9] OpenStreetMap, “Accuracy in openstreetmap.” https://wiki.openstreetmap.org/

wiki/Accuracy, December 2020. Retrieved 25th February.

[10] OpenStreetMap, “Accuracy of gnss data.” https://wiki.openstreetmap.org/wiki/

Accuracy_of_GNSS_data, June 2020. Retrieved 25th February.

[11] A. F. Aparicio, F. L. G. Vela, J. L. G. Sánchez, and J. L. I. Montes, “Analysis and
application of gamification,” in Proceedings of the 13th International Conference on
Interacción Persona-Ordenador, INTERACCION ’12, (New York, NY, USA), Associ-
ation for Computing Machinery, 2012.

[12] “Streetcomplete.” https://wiki.openstreetmap.org/wiki/StreetComplete. Re-
trieved 26th February.

[13] I. Celino, D. Cerizza, S. Contessa, M. Corubolo, D. Dell’Aglio, E. Della Valle, and
S. Fumeo, “Urbanopoly – a social and location-based game with a purpose to crowd-
source your urban data,” in 2012 International Conference on Privacy, Security, Risk
and Trust and 2012 International Confernece on Social Computing, (Amsterdam,
Netherlands), pp. 910–913, IEEE, 09 2012.

67

https://www.nngroup.com/articles/participation-inequality/
https://eng.sdfe.dk/datadistribution/
https://eng.sdfe.dk/datadistribution/
https://wiki.openstreetmap.org/wiki/Contributors#Denmark
https://wiki.openstreetmap.org/wiki/Contributors#Denmark
https://eos.com/blog/satellite-data-what-spatial-resolution-is-enough-for-you/
https://eos.com/blog/satellite-data-what-spatial-resolution-is-enough-for-you/
https://www.gislounge.com/gis-data-a-look-at-accuracy-precision-and-types-of-errors/
https://www.gislounge.com/gis-data-a-look-at-accuracy-precision-and-types-of-errors/
https://wiki.openstreetmap.org/wiki/Accuracy
https://wiki.openstreetmap.org/wiki/Accuracy
https://wiki.openstreetmap.org/wiki/Accuracy_of_GNSS_data
https://wiki.openstreetmap.org/wiki/Accuracy_of_GNSS_data
https://wiki.openstreetmap.org/wiki/StreetComplete

Group SW716F20 Bibliography

[14] B. Kim, Understanding gamification. ALA TechSource Chicago, 2015.

[15] Janaki Mythily Kumar, Mario Herger and Rikke Friis Dam, “Bartle’s player types
for gamification.” https://www.interaction-design.org/literature/article/

bartle-s-player-types-for-gamification, July 2020). Retrieved March 15th.

[16] G. Tondello F, R. Wehbe R, L. Diamond, M. Busch, A. Marczewski, and L. Nacke E,
“The gamification user types hexad scale,” in CHI PLAY Companion ’16: Proceedings
of the 2016 Annual Symposium on Computer-Human Interaction in Play Companion
Extended Abstracts, (New York, NY, USA), pp. 229–243, Association for Computing
Machinery, October 2016.

[17] S. Hatton, “Choosing the right prioritisation method,” in 19th Australian Conference
on Software Engineering (aswec 2008), pp. 517–526, IEEE, 2008.

[18] M. Sicart, “Loops and metagames: Understanding game design structures,” in Foun-
dations of Digital Games 2015, 2015.

[19] A. Ballatore, “Defacing the map: Cartographic vandalism in the digital commons,”
The Cartographic Journal, vol. 51, no. 3, pp. 214–224, 2014.

[20] L. Mathiassen, A. Munk-Madsen, P. A. Nielsen, and J. Stage, Object-oriented analysis
& design. Metodica AoS, 2000.

[21] G. C. Blog, “The difference between classic bluetooth and bluetooth low energy.”
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-
and-bluetooth-low-energy, May 2021.

68

https://www.interaction-design.org/literature/article/bartle-s-player-types-for-gamification
https://www.interaction-design.org/literature/article/bartle-s-player-types-for-gamification

	Frontpage
	Contents
	Introduction
	Problem Analysis
	Types of Contributions
	Notes
	Tagging
	Adding Points of Interest
	Mapping

	OpenStreetMap Contributors
	Amateurs
	Professionals
	Corporations
	Governments
	Bad Actors

	Accuracy and Precision
	Error Types in OpenStreetMap
	Existing Solutions
	StreetComplete
	Urbanopoly

	Gamification
	Game Elements
	Reason for doing gamification
	User Types

	Problem Statement

	Design
	Audience
	Requirements
	Game Design
	Achievements and Player Profiles
	Time-based Leaderboards and Brackets
	Socialising and Gamified Mapping Parties
	Gamification of Surveying

	Features
	Object-Oriented Design
	Problem Domain
	Application Domain

	User Interface Design
	Main Screen
	Social Screen
	Login Screen
	UI Flow

	Implementation
	Architecture
	Subsystems and Components
	Graphical User Interface
	Map-Data
	Quest-Finder
	Tile-Renderer
	Social-Information Handler
	Login-Manager
	Leaderboard-Calculator
	Quest-Solver

	Connecting Devices
	Log-In Handler
	Database and Server
	Database and Server Design
	Database and Server Implementation

	OpenStreetMap API Wrapper
	Endpoints

	Client
	Futures
	Provider
	Quest System

	Evaluation
	Performance Testing
	Discussion
	Fulfilment of Requirements
	Work Process

	Conclusion
	Future Works
	Verification Quests
	Tile Renderer
	Activity Motivation Experiment

	Bibliography

