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Denne rapport udforsker muligheder og problem-
stillinger forbundet med at udvikle et program-
meringssprog og tilhørende oversætter, til brug
ved input/output-baserede problemer. Omdrejn-
ingspunktet for projektet er en undren vedrørende
nuværende redskaber, der anvendes i forbindelse med
mikrocontroller miljøet. Dette gøres via en anal-
yse, der belyser både mikrocontrollere som platform,
men også styrker og svagheder i de associerede pro-
grammeringssprog. Endvidere benyttes dette som
basis for skabelsen af et sprog til håndtering af en
specifik problemtype. Denne process beskrives i om-
fattende stil, og designvalg taget i løbet af pro-
cessen forklares — både for valg truffet under de-
signet af programmeringssproget, men også for im-
plementeringen af oversætteren. Yderligere, på bag-
grund af relevante test gennemført, bliver der kon-
kluderet på hvorvidt det skabte programmeringssprog
reelt håndterer problemer på tilfredsstillende vis, i
henhold til de krav der blev opstillet i løbet af pro-
jektet. Der konkluderes at Rios er en færdig com-
piler, i den forstand at det kan kompilere program-
mer udelukkende via syntaks defineret i Rios. Til
slut vurderes der forskellige mulige tilføjelser til spro-
gets tilgængelige produktioner, og hvordan disse ville
være gavnlige.
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Reading Guide

If a citation is before a period mark (.), the citation is for the line it is on exclusively.

The purpose of this section is to highlight citation in practice. As such, the sentence
in bold, is the sentence that is cited [1].

If a citation comes after a period mark (.), the citation is for the entire paragraph.

The purpose of this section is to highlight citation in practice. As such an
example has been created with the intention of showing this in practice. [1]

The Context Free Grammar in this report is using Extended Backus-Naur Form where
the quotation marks (") are omitted and replaced with blue bold font when showing
syntax text.
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1. Introduction

The initial basis for this project was based in a general curiosity regarding microcon-
trollers. Through experience gained via prior projects, a few limitations were discovered,
when applying the Arduino Language to certain problem domains. This project intends
to explore whether these limitations are representative for a significant part of microcon-
trollers. To begin exploring this, a certain knowledge base has to be created. As such,
this chapter will introduce various concepts related to microcontrollers to help readers
understand the fundamental idea of how they function.

1.1. Introduction to Microcontrollers

A microcontroller unit is a small computer housed on a single integrated circuit (IC),
that works based off of a user-defined program. Microcontrollers function by utilising
simple sequences wherein a machine code instruction is given, decoded, and then executed
to perform a given hardware operation [1, p.15]. At the core, a microcontroller is a
miniature processor, and as such, uses vary greatly, making them a very versatile tool.
They are very diverse, and an abundance of different platforms exists with a multitude of
ways to program them [2]. However, microcontrollers are typically used as input/output
(I/O) devices to connect and control, external devices and components. I/O applications
often involve an external device sending data to the microcontroller via pins. The data
is processed and, if it fulfils certain user-defined criteria, activates procedures within
the microcontroller. These procedures cause certain reactions; either by activating an
external device or by triggering internal functions. [3]

1.2. Personal Experiences with Microcontrollers

Half of the project members had personal experiences with microcontrollers, specifically
Arduino, prior to this project. The commonality in all cases was that the initial contact
occurred during high school education, where one of the purposes was to teach both
programming and electronics. One of the observations was that the Arduino Language
often required frequent repetition of code between projects, especially code concerning
things like pin setups or functionality when signals from a pin were activated. In larger
projects, this became especially apparent. Utilising the object-oriented programming of
C++ could also be very restricted when writing larger programs, because of the limited
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available program memory on the Arduinos used in the courses. This sometimes resulted
in projects implementing state-machines to restructure the programs, often causing the
same state-machine implementations to be repeated numerous times. Prior knowledge
with regards to Arduino, and the platform being widely used, was also the cause for the
focus of this project on said brand from the start.

1.3. Introduction to Arduino

Arduino is an open-source microcontroller platform utilising easy-to-operate hardware
and software [4]. At its core, the Arduino platform usually incorporates an IC from the
ATMega line of microcontrollers made by Atmel Corporation [5]. Most Arduino boards
give access to a number of pins for signals, a USB port for communicating with and
uploading programs to said board, as well as a port for supplying power [5]. A significant
part of Arduino programs are programmed in a fashion, where a set of functions are kept
in a state of waiting, until they are triggered by a specified value measurement by an
external device. This assumption is built upon the contents of the Arduino Project
Hub [6] at the time of this reports conception. As such I/O-based applications are a core
facet of many Arduino Language applications [7].

Additionally, Arduino has its own language, called the Arduino Language. It is one of the
most commonly used language for programming on Arduino microcontrollers. This is due
to built-in libraries containing Arduino specific functions. However, Arduino Language
is but one of multiple usable languages for Arduino that each fill specialised needs that
the general Arduino Language does not cater to, or is meant as replacements for the
Arduino Language.

The Arduino Language itself is a dialect of the C++ language, meaning it uses large
parts of the C++ language while also employing others of original design. The differ-
ences in that Arduino Language often comes down to simplifications of C++ meant to
make the Arduino Language easier to approach than C++ (this is explained further in
section 2.4.2).

1.4. Initiating Problem Statement

Arduino is a platform meant to allow even the most inexperienced programmers, to in-
corporate microcontrollers and associated hardware with a user-defined piece of software,
in a manageable manner [7]. As was mentioned in section 1.3, a significant amount of
available Arduino projects were centred around input-output based situations. Given
that the Arduino Language is built upon C and C++, both of which are general purpose
languages, it can be assumed that the Arduino Language is as well. As such, it could be
argued that the Arduino Language caters to a generality, which in turn might lack more
specialised functionality for addressing I/O-based problems.
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In order to further explore the dynamic between the general Arduino Language, and
the handling of a specialised subset of problems, the following initiating problem was
formulated to guide the problem analysis:

"How well is a general computational language, such as the Arduino
Language, suited for a domain centred around I/O-based problems?"

As such focus should be on understanding what I/O-based problems entail, as well as
the potential strengths of a specialised language. Additionally, the initiating problem
also reflects that Arduino is a general-purpose language that has many uses, and as
such warrants an evaluation method for determining a given language specialation for
specifically I/O-based problems.

1.5. Summary of Chapter 1

This chapter introduced microcontrollers as a concept. This was done by explaining the
theory behind their composition, as well as give a brief look into their uses. The chapter
also introduced the Arduino brand of microcontrollers, and delved into the personal
experiences that was used as a basis for picking Arduino as the target platform for Rios.
Finally, this chapter presented a question, to serve as the basis for an analysis into the
I/O-based problems and their interactions with the microcontroller platform.

By reading this chapter readers should acquire a firm understanding of what a micro-
controller is, as well as why the language being developed within this report is to be
modelled for the purpose of handling problems on the Arduino platform. Additionally,
readers should be aware of where this focus comes from, in addition to why the analysis
in chapter 2 is conducted.
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2. Analysis

In order to explore and answer the specified initiating problem statement, it is necessary
to expand upon the concepts presented in the first chapter. As such, further concepts,
related to input/output-based problems, are introduced and discussed. This includes,
analysing what I/O-based problems encompass, in addition to what the typical proce-
dures are for these types of problems. Given the focus of the domain, projects specifically
written to run on Arduino microcontrollers are chosen as the archetype, and as such, will
be the ones to be analysed. This should help garner an understanding as to which re-
quirements the analysed languages should be able to fulfil, in order to be labelled as an
I/O specialised language, in addition to how well it fulfils them. For this purpose, we
will introduce several evaluation criteria for which to analyse a language. Using these
should lead to an answer for the initiating problem statement.

2.1. I/O-based Problems

In this report, an I/O-based problem refers to a problem in which a microcontroller needs
to communicate with the outside world. This process should be done by having I/O
processors handle the transference of data between peripheral devices and components,
such as a microcontroller and an LED for instance [8].

2.2. How to Solve I/O-based Problems

As previously mentioned in section 1.1, I/O-based problems are a significant part of the
problems solved by using microcontrollers. Therefore, a number of Arduino projects
based on I/O were analysed, one of which was a project revolving around a smoke de-
tector. The source code to this can be found in appendix A. The problem is simple:
measure a value and change the behaviour when the measured value exceeds a given
threshold. If the threshold is exceeded, a red LED should light up and a tone should
play from a buzzer, otherwise a green LED should be lit and the buzzer should be silent.

8 of 78



2.2.1. I/O Automaton

According to Lynch1 and Tuttle2 from Massachusetts Institute of Technology, we can
model this problem using the input/output automaton model. The model can be de-
scribed using five components:

• an action signature sig(A),
• a set states(A) of states,
• a nonempty set start(A) ⊆ states(A) of startstates,
• a transition relation steps(A) ⊆ states(A)×acts(A)×states(A) with the property

that for every state s′ and input action π there is a transition (s′, π, s) in steps(A),
• an equivalence relation part (A) partitioning to set local (A) into at most a count-

able number of equivalent classes.[9]

The last of the components, the equivalence relation, has been omitted in order to simplify
the solution, since it is only relevant to fairness computation which is an important factor
in multithreading. However, Arduino boards generally cannot commit to multithreading
due to the built-in specs of most Arduino boards not being able to handle it. The action
signature consists of all actions in the system, these actions are classified as one of three
types, input actions, output actions, and internal actions. Input actions are the actions
in which the environment gives information to the system, whereas output actions send
out information to the environment. Lastly, internal actions are simply actions which
the outside world can not perceive [9].

Using these components we can now model the previously mentioned smoke detector
problem. We define the set of action signature as follows:

Input actions: PUSH

Output actions: RED, GREEN, BUZZER

Internal actions: none

The states of the smoke detector consist of a polling state and an alarm state. Each of
these have access to the same variables red, green and buzzer, - all of which can take
on the values 0 or 1 relating to an on or off mode - a set threshold and a reader which
both can take on a value which can be represented by an integer. The polling state is
the start state where the variables red, green and buzzer are set to 0, 1, 0 respectively,
the threshold is whatever value the user specified, and the reader is 0. Similarly, the
alarm state initially sets the variables red, green and buzzer to 1, 0, 1 respectively. The
transition relation of the smoke detector is described by stating a precondition and an
effect for every action π, in case the precondition is simply true it will be omitted.

PUSH

Effect: reader ← input_value

1Professor in Software Science and engineering at MIT,
2PH.D Student as of the papers release
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RED

Precondition: red = 1

Effect: Turns on red LED

GREEN

Precondition: green = 1

Effect: Turns on green LED

BUZZER

Precondition: buzzer = 1

Effect: Turns on buzzer

It should be noted that the input actions π reaches a high number of actions, in this
case, as it can simply be thought of as any integer being a separate input action, due
to it simply being a value read from the outside world. For this reason we have limited
the input actions to be represented by two distinct actions, namely, aboveTreshold =
{x | x ∈ Z, x > threshold} and belowTreshold = {y | y ∈ Z, y ≤ threshold}. Where all
input values in aboveTreshold would jump to the polling state, and all input values in
belowTreshold would jump to the alarm state. This dynamic can also be modelled as
shown below.

Figure 2.1.: Two-state diagram of the smoke detector

We would start in the polling state, then repeatedly read the value from the outside
world and incorporate either aboveTreshold or belowTreshold, whichever is relevant.
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2.2.2. Arduino Language and I/O-Problems

Using the applied solutions in section 2.2 as a baseline for what a language centred around
I/O-based problems should be able to simulate, reveals a need for the addition of certain
concepts.

While a general computational language such as Arduino is able to implement the high-
lighted solutions, it requires heavy manual work from the user. This is because the
generality of the language ensures the user must specify as much as they can, while the
compiler predicts and assumes as little as possible, in order to cater to the most possible
use cases. This means that using a general computational language such as Arduino to
solve strictly I/O-based problems likely includes a redundant amount of generality, which
is not befitting these domain-specific problems.

2.3. Language Evaluation Criteria

In order to evaluate the Arduino Language, a special consideration should first be taken
with respect to I/O-based problems, namely evaluate how well the language takes advan-
tage of relevant aspects of the problem domain. In the case of the presented solutions in
section 2.2, states, transitions, and actions all play an integral part in solving these types
of problems. However, in order to properly evaluate how well the language incorporates
these concepts, it is paramount that we first define what makes a language good in the
first place. As such, certain language evaluation criteria are utilised in order to carefully
examine the fundamental parts of good programming languages.

For this report, the method of evaluation is based in the evaluation rule-set presented
within the the book ’Concepts of Programming Languages’ by Robert W. Sebesta . The
language evaluation criteria within Sebesta’s book is split into four overarching categories:
readability, writability, reliability, and cost. An analysis will be conducted on the Arduino
Language to both explain the underlying concepts of the language evaluation criteria,
as well as evaluating strengths and weaknesses of the Arduino Language with respect to
solving I/O-based problems.

Readability evaluates the ease with which a given language can be read and understood.
Additionally, readability must only evaluate the language within the context of the in-
tended domain model [10]. As such, in the problem domain of I/O-based problems, given
a source code, the easier to identify and understand concepts such as states, actions and
transitions the better the readability. Similarly, given a I/O-based problem, how easily
the programmer would be able implement the appropriate states, actions and transi-
tions would determine the Writability of the programming language [10]. Reliability is
measured by how well a program fulfils required specifications for all possible situations.
Reliability relies on both readability and writability to succeed. A general language that
does not support the required approaches to a problem within the problem domain, will
likely utilise a sub-optimal approach that is less likely to be universally applicable [10].
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Lastly, the cost is measured by the cost effectiveness of utilising a language - measured
both in money and time. It is measured by 7 criteria: [10]

• The cost required to train programmers in the use of the language.

• The time required to write a program in the language

• The cost of compiling a program in the language

• The cost of executing a program in the language.

• How well the language implementation system is designed.

• How reliable the system is, with regards to running properly at critical junctions.

• How easy it is for a programmer, that is not the author, to maintain software
utilising the language.

In addition to the aforementioned four primary categories, there are nine sub-categories
that are utilised to evaluate specific sub-problems within a given category. The various
sub-categories can be seen in Table 2.1.

Readability Writability Reliability
Simplicity * * *
Orthogonality * * *
Data types * * *
Syntax design * * *
Support for abstraction * *
Expressivity * *
Type checking *
Exception handling *
Restricted aliasing *

Table 2.1.: A table that depicts which sub-categories three of the major categories used
to evaluate a language rely on. Like in the book, cost has been omitted,
as it is evaluated on a different set of rules. Table taken from ’Concepts of
Programming Languages’ page 31 [10].

Simplicity evaluates the ease with which a programmer can pick up the language and
learn it. It evaluates various problems related to having multiple solutions for the same
problem, the less options the simpler the language [10]. This is an important criterion to
consider when dealing with domain-restricted problems. As certain concepts are already
accepted in certain domains, in the case of I/O-based problems these have proven to be
concepts such as states, actions and transitions (see section 2.2). Therefore having the
user manually incorporate a state, for instance, in one of multiple possible ways adds
unnecessary complexity, compared to simply having the language support states as a
concept, with a single way of incorporating it into the program solution.
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Orthogonality is the concept of combining primitive data types and functions to make
more complex data types. Higher degrees of orthogonality make a language more simple
to use, but too much orthogonality can also make it complex. As an example of orthog-
onality, the C language has some simple data types in ints, floats and chars. Combined
with the pointer data function, these can be turned into arrays if the data is stored in
consecutive memory. [10] Given I/O-based problems, certain data types could be useful
when considered primitive. Given that an I/O problem is required to communicate with
the outside world, having pins and serial connection, the primary way of communication
for the microcontroller, as primitive data types might prove useful in contrast to the user
manually constructing them.

Data type evaluation measures a languages ability to define data types and structures
adequately. A type system is used to associate types with values to increase readability.
If a language lacks necessary types, like a boolean type, it would constitute using alter-
natives such as 0 and 1, which could muddle the intention and needlessly complicate the
code. [10] Given the domain of I/O-based problems, a data type such as states would
seem ideal for solving these kinds of problems.

Syntax design evaluates the simplicity and readability of the written part of a given
language. It evaluates different aspects, such as keywords, as well as the form and
meaning of statements. It should evaluate how well compound statements are designed,
whether keywords are locked so as to not be usable as variable names, as well as whether
the semantic meaning is gaugeable from the keyword. [10]

Abstraction as a concept is the idea of representing an entity using only its most signif-
icant attributes. For example, one could define birds to be animals with two legs, two
wings, a tail, and feathers. Abstraction presents itself primarily through process abstrac-
tion and data abstraction. Process abstraction encompasses subprograms or functions,
while data abstraction encompasses objects and their resulting data types. [10]

Support for abstraction would thus mean that a program to some degree supports sub-
programs, objects, or both. As expressed within section 2.2, a potential solution for
solving I/O problems is to utilise state machines. This solution would entail having var-
ious states that a program can jump between. States would consist of a set of actions,
that would only be relevant, and need representation when utilised. As such there could
be a very limited type of data abstraction present.

Expressivity is the evaluation of convenience of expressing computations through code.
Many languages have shorthand versions of doing certain actions, to avoid cumbersome
and bloated code. A common one is a post-increment operator. Instead of writing the ac-
tual addition piece, many languages support the shorthand of simply writing variable++
to increment a variable by 1. [10] In an I/O setting it might prove that certain actions
are common, and therefore adding a short hand for such expression could increase the
specialisation of the language, to even further cater to specifically I/O-based problems.

Type checking is employed to test for type errors. In contrast to data type evaluation,
type checking evaluates whether types are used for their intended purpose, and not
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whether the right types are present in the language. As such, different approaches to
type checking exist. Examples of this could be by checking all parameters at compile
time, or some combination of formal and actual parameter checking. [10]

Exception handling is the ability for a program to intercept run-time errors, and handle
them in such a way that the program may be able to continue. Some languages offer
extensive exception handling (Ada, C++, Java, C#), while others offer little to none (C,
Rust, Go). [10] In many languages, exception handling consists of setting up try/catch
block. Imperative languages like C could potentially implement something resembling
exception handling, but it generally does not fit within the languages scope. When a
problem is occurred, it stops the program execution, and tries to find a catch block to
solve the error. If a catch block is not found, the exception escalates through the call
stack. This does not stop until either a catch block is found, or in the case of no catch
blocks, an error message is printed by the program.

Aliasing is the concept of having two or more distinct names in a program that all access
the same memory cell. For example, two pointers that both point to the same memory
location. [10]

2.4. Evaluation of C++ and the Arduino Language

With respect to the initiating problem in section 1.4 an evaluation of the Arduino Lan-
guage will be presented. However, as it fundamentally is a dialect of C++ with some
specialised libraries, an evaluation of C++ will first be conducted. After this, the eval-
uation will be expanded to include the parts unique to Arduino Language. The method
for evaluating the two languages will use the criteria described in section 2.3.

2.4.1. Evaluation of C++

C++ is an extension of the C language that adds a lot of new things to make pro-
gramming easier, while also using a wide range of data types to secure clear and concise
programming syntax. It supports many data types, ranging from the built-in Boolean
to the user-defined enumerations, and as such provide programmers with tools for a sig-
nificant part of possible use cases. It allows the primitive data types along with pointers
to these. Additionally, it introduces objects, allowing for further abstraction and further
orthogonality. It splits these data types into three overarching categories: built-in, user-
defined, and types derived from fundamental types. Additionally, C++ allows for some
semblance of aliasing, through the use of pointers, where users make multiple variables
that point to the same memory space. Though it adds many new types and allows many
new operations on these types, C++ maintains some of the simple syntax from C. The
most significant difference is the presence of classes within the language. Another sig-
nificant difference is the means of using libraries. The calls to library functions in C++
follow the syntax libraryName::desiredFunction(). It should be noted, that with the

14 of 78



very large amount of standard libraries included in C++, the language itself is also con-
sidered quite large. This can make it harder to learn, as there could be some features a
new programmer would need, but would not know how to find.

C++ inherits some C expressions that increase expressivity, such as pre- and post-
increment operators. The large amount of standard libraries also add their own ex-
pressions for the functionality they concern, making it easier to write more complicated
computations in the language. To facilitate this expressivity, and to allow for various
actions, C++ also includes exception handling. This is done through try/catch blocks,
though a thrown exception may propagate up through the call stack as long as it is not
caught. While an extension of C, making compilation slower, it can also be used with
a relatively small feature-set. As such, one can start small in C++ and slowly begin
expanding the number of features being used. This allows programmers to start small,
but also risks having two programmers learn two different subsets of C++.

2.4.2. Evaluation of the Arduino Language

We can extend the evaluation of the C++ language somewhat by recognising that most
of the Arduino Language is contained in libraries that are made available by the IDE.
Most of these libraries are concerned with making it easier to work with different aspects
of Arduino usages. The major ones concern pins and pin modes, while others concern
things such as servo motors, EEPROMmemory, Ethernet connections, among others [11].
These libraries fulfil the input/output concerns for Arduino boards specifically. The issue
of modelling state machines, however, persists in the language, as none of the Arduino
standard libraries concern modelling state machines.

Typically, a programmer set to program a microcontroller will use an accompanying IDE,
if available [12]. These IDEs contain many functions to make programming easier, includ-
ing pin interaction, copying compiled code to the memory of the controller, among other
functions. In addition to these functions, the Arduino IDE removes much “boilerplate”
code that would be found in normal C++ programs. This is especially noticeable in the
removal of the need for function prototypes and library imports. These are automatically
inserted during compilation of a program sketch.

First it can be assumed that a C++ programmer uses an appropriate library for their
given microcontroller. Thus it can also be assumed that they will use the Arduino IDE
for programming the Arduino controller. As such, some of the downsides from pure C++
is mitigated through the use of the tools in the IDE.
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C++ Arduino
Simplicity Somewhat simple, but size

of language limits simplic-
ity

Much boilerplate removed,
simplifying programs

Orthogonality Somewhat orthogonal Somewhat orthogonal
Data types Good amount of primitive

types and type operations.
Objects allow further data
types

Good amount of primitive
types. Libraries allow con-
nected components to be
used as data types

Syntax design Somewhat simple syntax.
Some parts are obscure
until a user learns about
them (function prototypes,
library calls)

Simple syntax, especially
when facilitated by stan-
dard libraries.

Abstraction Objects allow a great deal
of abstraction.

Objects are not commonly
used, but are available.
Most abstraction is done
through libraries and their
types.

Expressivity Some operations can be
done in many ways. Op-
erator overriding allows for
further expressivity.

Some operations can be
done in many ways. Oper-
ator overriding allows fur-
ther expressivity, though
not for library functions.

Type checking Statically typed and
scoped.

Statically typed and
scoped.

Exception handling Simple exception handling
with try/catch blocks.

No exception handling.

Aliasing Pointers allow aliasing.
Objects also allow aliasing
to an extent.

Pointers allow aliasing.

Table 2.2.: Evaluation summary

2.5. Juniper

When analysing any given problem domain, a look at possible solutions to the prob-
lems can help inspire or deter from recreating an already existing solution. During this
analysis, a number of arguments have been laid out to identify the lack of specialisation
for I/O-based problems in the Arduino language, despite it being a primary use case
for Arduino use cases. This same conclusion was already reached by the creators of Ju-
niper, a functional reactive programming language (FRP), who explicitly states in their

16 of 78



documentation that,

[...] many Arduino programs are reactive: they respond to incoming signals,
process those signals, and generate new output signals. Using the existing
C++ environment, these programs quickly turn to “spaghetti” code that lacks
modularity and is difficult to reason about.[13]

Juniper allows users to employ a range of high level features like parametric polymorphic
functions and immutable data structures. Juniper was made to handle timing based
events that, according to the creators, the current Arduino Language is not suited to
handle. In this section, an example of a simple program written in the Juniper language
will be presented.

1 module ButtonDebounce

2 open(Prelude, Button, Io)

3
4 let buttonPin = 2

5 let ledPin = 13

6
7 let bState = Button:state()

8 let edgeState = ref Io:low()

9 let ledState = ref Io:high()

10
11 fun button() = (

12 let buttonSig = Io:digIn(buttonPin);

13 let debouncedSig = Io:fallingEdge(Button:debounce(buttonSig,

↪→ bState), edgeState);

14 let ledSig =

15 Signal:foldP(

16 fn (event currentLedState) ->

17 Io:toggle(currentLedState)

18 end,

19 ledState, debouncedSig);

20 Io:digOut(ledPin, ledSig)

21 )

22
23 fun setup() = (

24 Io:setPinMode(ledPin, Io:output());

25 Io:setPinMode(buttonPin, Io:input());

26 Io: digWrite(ledPin, !ledState)

27
28 fun main() = (

29 setup();

30 while true do

31 button()
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32 end

33 )

Listing 2.1: A program that outputs toggles an LED when a button is pressed

The code seen in Listing 2.1 describes a program in the Juniper language that contin-
uously polls a button for an input, and toggles an LED on and off. The program was
pulled from the example site of Juniper. We will explain the program in further detail
below.

1 module ButtonDebounce

2 open(Prelude, Button, Io)

3
4 let buttonPin = 2

5 let ledPin = 13

6
7 let bState = Button:state()

8 let edgeState = ref Io:low()

9 let ledState = ref Io:high()

Lines 1 to 9 are simply variable declarations.

10 fun button() = (

11 let buttonSig = Io:digIn(buttonPin);

12 let debouncedSig = Io:fallingEdge(Button:debounce(buttonSig,

↪→ bState), edgeState);

From line 10 a function is defined. buttonSig is set up to read digitally from the
previously-defined buttonPin. debouncedSig is given as a debounced signal from a
button, specifically from the falling edge of the signal when the button is pressed.

13 let ledSig =

14 Signal:foldP(

15 fn (event currentLedState) ->

16 Io:toggle(currentLedState)

17 end,

18 ledState, debouncedSig);

19 Io:digOut(ledPin, ledSig)

20 )

Line 13 to 20 finish the function definition. The variable ledSig is given as the result
of a function foldP. foldP takes as input a lambda function (lines 16 to 18), a variable
(ledState) and a signal (debouncedSig). When the debounced signal is activated, foldP
will use the lambda function to toggle the LED state. Line 20 outputs the desired LED
state to the appropriate pin.
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21 fun setup() = (

22 Io:setPinMode(ledPin, Io:output());

23 Io:setPinMode(buttonPin, Io:input());

24 Io: digWrite(ledPin, !ledState)

25
26 fun main() = (

27 setup();

28 while true do

29 button()

30 end

31 )

Lines 21 to 31 simply set up the program and run the button function indefinitely.

It should be noted, that as of Juniper 2.2, the Signal:foldP function can be replaced with
a built-in Signal:toggle, providing the same functionality. In the example program, this
saves 4 lines of code. [14]

2.6. Problem Statement

After having analysed I/O-based problems and what they entail, we based the evaluation
criteria in a theory of I/O automatas which should solve our domain-specific problem set.
Certain concepts, like states, actions and transitions were of particular interest, and were
assigned special focus in an attempt to determine whether or not a general computational
language, such as Arduino, is suited for solving I/O-based problems. Given the lack of
specific I/O-based datatypes and apparent specialisation, it was concluded that a general
computational language was not suited. It should be noted, that while we conclude that
the general computational language approach is not an appropriate approach, it does not
mean it is unable to solve the domain-restricted problems, rather that these solutions are
unsatisfactory. As such, a problem statement has been formulated in order to solve the
issue,

Given that I/O automata are a common possible solution for problems
solved with Arduino microcontrollers, how can a language be designed
which is based in the relevant aspects of the automata, and specialised
for Arduino microcontroller boards?

Given that a part of the identified problems with the analysed languages were a distinct
lack of I/O specific concepts and models, the problem statement has been formulated
as a means to address that issue. The solution to the problem statement should be
a new language that easily, and intuitively implements the necessary and specialised
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concepts mentioned in section 2.2 with the explicit purpose of dealing with I/O problems
in microcontrollers.

2.6.1. Limiting the Problem Area

Given that the problem statement explicitly requests a new language, it is assumed that
it is new language, and not an extension to an already existing language. As such, the
design and complexity of the new programming language would expectantly vary greatly
depending on the scope with which it is developed with. These concepts will be explored
further in chapter 3, and an outline will be given for what the scope of the language
entails.

2.7. Summary of Chapter 2

This chapter presented the general problem that had been found in chapter 1 and the so-
lution that had been found. This chapter then delved into why a general language might
not be suited to handle specialised problems. This was done by presenting certain prob-
lems present within the Arduino Language, and then proposing potential improvements
based on these. Arduino Language was subjected to extensive evaluation, to properly
analyse what limitations, with respect to I/O-based problems, could be. Because of the
fact that Arduino Language consists of C++ with a few specialised libraries, the analysis
was conducted first on C++ and then the specialised Arduino libraries. These, in con-
junction with an analysis of a current solution, Juniper, served as the basis for locating
strengths and weaknesses of the microcontroller platform at present. Finally, all of this
was condensed into a single problem, that is meant to help guide the reader throughout
the rest of the report.

By reading this chapter, readers should be aware of the limitations found within the C++
and Arduino Language, as well as in some specialised languages like Juniper. Readers
should have gained insight into why general-purpose languages might, in some cases, not
be designed to deal equally well with every type of problem. Finally, readers should
have gained an understanding as to why utilising automata could be beneficial to an
input/output-based platform.

20 of 78



3. Rios Language Specification

To fulfil the goal specified within section 2.6, Rios needs some semblance of specialisation
that already available solutions do not provide. To achieve this goal, certain constructions
and productions must be defined and given semantic meaning, to create a better-suited
solution to I/O-based problems, than what was evaluated within section 2.3.

Within this chapter all syntax and related semantics for Rios will be presented. In
addition to the meaning behind the language constructs of Rios, the chapter also holds a
definition of the expectations the authors behind the language hold. These are based in
both personal experiences as programmers, but also in the language analysis conducted
within Chapter 2.

3.1. Language Requirements

In section 2.3 a set of evaluation criteria was set forth, which served as an evaluation
method to determine how specialised a given language is in regards to I/O systems.
Therefore, a number of requirements will be presented, which if implemented successfully,
should assist in reaching a high level of specialisation. In the coming section, a set of
requirements, separated into functional- and non-functional requirements, will be listed.
These requirements were formulated based primarily on the I/O automata presented in
section 2.2, in order to ensure the language will support every relevant concept mentioned
therein. The requirements will be used throughout the design phase, in an effort to guide
the process, as well as being included within the final language evaluation.

3.1.1. Functional Requirements

Functional requirements is part of the system development process. They explain what
the intention of the language is and what Rios should be able to do. As such, they revolve
around evaluating specific operations like calculations, data manipulation, and technical
details. [15] The functional requirements for Rios are as follows:

1. Rios should be able to solve I/O based problems using specialised concepts relevant
to model an I/O automaton. This includes but is not limited to:

a) States

b) Start State
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c) Actions

d) Transitions

2. Rios will be able to compile and be uploaded to Arduino boards.

3. Rios should support operations to relevant data types. This includes:

a) Arithmetic operations

b) Logical operations

4. During an compilation error, the compiler should give the exact location of the
dysfunctional code.

3.1.2. Non-Functional Requirements

Non-functional requirements, like functional requirements, are established, when creating
a system, to help evaluate whether it fulfils its specified goals. Non-functional require-
ments are used to evaluate the operation as a whole, rather than the specific function
evaluation that functional requirements deals with. These evaluation criteria can be, but
are not limited to, the time between critical failure occurrences, to the cost of main-
taining necessary facilities - to name a scant few. [15] The non-functional requirements
formulated for Rios are:

1. It should be possible to identify specialised concepts relevant to model an I/O
automata. This includes:

a) States

b) Start State

c) Actions

d) Transitions

2. The design choices for Rios should not be limited by a specific Arduino microcon-
troller model.

3.1.3. Design Choices

In order to simulate an I/O automaton, Rios should implement the relevant concepts
highlighted in section 2.2. Furthermore, the language needs to be evaluated in accor-
dance with the evaluation criteria presented in section 2.3, meaning the implementation
should also be done simply and effectively. Given that states and actions are singular
concepts, minimal modifications were necessary in order to respect the evaluation crite-
ria. However, given that a singular action can be one of three action types, namely an
internal action, input action or output action, Rios modifies the concept of actions into
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a singular new concept of reactions. To recap the action types, an internal action should
not be observable from the outside world, it should be executed entirely internally. This
is in contrast to input and output actions, which can be observed. An input action is the
act of having the system gather information from the outside world, for instance having
a button pressed down, or measuring a given value from the environment. Similarly, an
output action is the act of having the system pass information to the outside world, for
instance by printing a message or shining a light [9]. By analysing the structure of each
action type (see figure 3.1) a simplification can be made.

Internal	Input

Internal	Output

External	Input

Internal	Output

Internal	Input

External	Output

Internal
Action

Input
Action

Output
Action

Figure 3.1.: Visual representation of the three different action types in an IO automata

We notice that the actions types can be connected in the sense that:

• An input action begins with an external input and ends with an internal output.
• An internal action begins with an internal input and ends with an internal output
• An output action begins with an internal input and ends with an external output.

By letting the internal output from the input action function as the internal input of the
internal action, and similarly the internal output of the internal action as the internal
input of the output action, the concept of the reaction can be realised.
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External	Input

Internal	Output

Figure 3.2.: Visual representation of a reaction in Rios

However, this means that every internal action will be dependant on an input action
which might not be desirable in some cases. For example, imagine the scenario where a
lamp needs to turn on by the press of a button and then turn off again after 5 seconds. In
this instance, there is no input action to turn off the light, only an internal action which
determines whether or not it is time to turn off the light, and then an output action which
turns said light off if prompted. For this reason, parts of a reaction in Rios can be omitted,
meaning a reaction can exist independent from an external input, or exist without any
external output to show the outside world. This further allows Reactions to dynamically
interact, as they can now extend each other. This means given a singular external input,
a singular external output can be given, but after being processed by multiple internal
actions in different reactions. It should then be noted that this versatility means it is
possible to solve other problems than strictly IO based in Rios, as the given program
may not be dependant on environmental actions in order to execute actions.
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3.2. Syntax and Semantics

The following section will explain the Rios language specification, focusing on single con-
cepts at a time. The relevant parts of the Context Free Grammar for the concept will be
shown, along with an informal semantic explanation, followed by structural operational
semantics for the concept in question.

3.2.1. Abstract Syntax and Helping Functions

Before the language specification can be understood, an abstract syntax and some helping
functions will be presented. The helping functions following the abstract syntax will be
used extensively in the coming sections, and generally represent some smaller part of the
program or program state.

The concrete syntax, abstract syntax, and operational semantics can also be found in
their entireties in Appendix B and Appendix C

Abstract syntax categories

n ∈ Num Numerals
x ∈ NameV Variable Names
s ∈ NameS State Names
Dp ∈ DecP Priority List Declarations
Do ∈ DecO OnEnter Declarations
Dv ∈ DecV Variable Declarations
Ds ∈ DecS State Declarations
Dr ∈ DecR Reaction Declarations
Dc ∈ DecC Reaction Case Declarations
S ∈ Stmt Statements
e ∈ Expr Expressions
u ∈ Unit Time units
T ∈ Type Types
p ∈ Prog Program
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Abstract syntax

e ::= n | x | ( e ) | e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2

| e1 == e2 | e1 != e2 | e1 < e2 | e1 > e2 | e1 <= e2 | e1 >= e2

| !e | e1 || e2 | e1 && e2

Dp ::= s, Dp | s | ε
Do ::= onenter: S | ε
Dv ::= t x = e Dv | ε
Ds ::= state s { Dp Do Dv Dr Ds } Ds | ε
Dr ::= when c | ε
Dc ::= | e : S c | ε
T ::= apin | dpin | serial | int | long | bool | byte | float

S ::= S1 ; S2 | x = e | Dv | transition( s1 ) | e | ε
p ::= Ds

Meta sets

v ∈ Val = Q ∪ Strings ∪ {true, false}(3.1)

r ∈ Rea = (DecC ×Var×Pri)(3.2)

r∗ ∈ Rea∗(3.3)

nexts ∈ NameS × {ε}(3.4)

currs ∈ NameS(3.5)

l ∈ Loc(3.6)

NameSE = NameS ∪ {ε}(3.7)

The set Val denotes the possible values of variables in Rios. This consists of all rational
numbers, any string of characters, and the (boolean) values true and false. The set Rea
denotes the possible reactions as the cartesian product of all possible case declarations and
all variables. nexts, currs, and l represent variables used for the semantics. Respectively,
they represent the next next state in transitions, the current state of the program, and
a location.
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Helping functions

N : Num→ Q(3.8)

pri ∈ Pri : (NameS ∪ {next}) ⇀ N(3.9)

var ∈ Var : NameV ⇀ Loc(3.10)

sto ∈ Sto : Loc⇀ Val(3.11)

sta ∈ Sta : NameS ⇀ Rea∗︸ ︷︷ ︸
Reactions

× Stmt︸ ︷︷ ︸
OnEnter

×NameSE︸ ︷︷ ︸
Parent

× NameSE︸ ︷︷ ︸
DefaultChild

(3.12)

anc(s) = {s} ∪ anc(pares) where (pares, ...) = sta(s)(3.13)

rel ∈ Rel : (Rea× {reader , writer}) ⇀ Loc∗(3.14)

nextsto(l) = l + 1(3.15)

The helping functions provide various information for the semantics as needed. The
function N denotes the conversion from numerals to numbers. The function pri is a
mapping from a state name to a natural number representing the priority of a state.
This is used for checking state priorities. The functions var and sto together denote a
variable name and its corresponding location and value. The function sta maps a state
name to a tuple of possible reactions, OnEnter statements, as well as the name of the
parent state and the name of the default child state of the given state, both of which has
the option to be empty. The function anc takes a state name as input and returns the
set of state names denoting the given states ancestors. This is mostly used to ensure that
the correct OnEnter statements are executed. The function rel gives a reaction and its
relation to a given location or number of locations, so that reactions can later be sorted,
as will be described in section 3.2.4 and section 4.8. Finally, the nextsto function simply
extends storage as needed.

3.2.2. State

Decs ::= {Dec}
Dec ::= V arDec

| ReactDec
| StateDec
| OnEnter
| PriorityList

StateDec ::= [default] state StateId { Decs }

StateId ::= bigLetter {anyFollowing}
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States are environments that determine which Reactions are active and which Variables
are in scope, they also have an optional OnEnter and a mandatory Priority List.

var, rel , pri , pares ` 〈Dp, pri〉 −→Dp 〈pri ′〉
s ` 〈Do, sta ′〉 −→Do 〈sta ′′〉
〈Dv, var, sto〉 −→Dv 〈var′, sto′〉

var′, sto′, pri ′, s ` 〈Dr, sta ′′, rel〉 −→Dr 〈sta ′′′, rel ′〉
var′, sto′, pri ′, s ` 〈Ds1, sto

′, sta ′′′〉 −→Ds 〈sto′′, sta ′′′′〉
var, sto, pri , pares ` 〈Ds2, sto

′′, sta ′′′′〉 −→Ds 〈sto′′′, sta ′′′′′〉
var, sto, pri , pares ` 〈state s { Dp Do Dv Dr Ds1 } Ds2, sto, sta〉 −→Ds 〈sto′′′, sta ′′′′′〉

where (pr, po, pp, pc) = sta(pares) and sta ′ = sta[s 7→ (pr, ε, pares, ε)]

(DEC-STATE)

var, sto, pri , pares ` 〈ε, sto, sta〉 −→Ds 〈sto, sta〉(DEC-STATE-EMPTY)

A program can have an arbitrary amount of States, however the root of the program
exists within a global state which is predefined.

Figure 3.3.: A pair of example states

As shown in fig. 3.3 a State consists of a set of variables and a set of Reactions. These
Variables and Reactions are a subset of all the Reactions and Variables in the program,
which can be shown as the following:

AllReactions = {R1, R2, R3}
AllV ariables = {V1, V2}

StateA = {V1, R1, R2}
StateB = {V2, R3}

(3.16)

Where R1, R2 and R3 are reactions and V1 and V2 are variables.

A Rios program can change State during runtime. This occurs via Reactions in a State
that can cause a Transition. When a State change occurs, the program will complete the
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current cycle of Reactions, before checking the new active Reactions in the new State. if
a State changes to itself, it will not run any OnEnter operations but will continue from
where it stopped.

Priority list

Decs ::= {Dec}
Dec ::= V arDec

| ReactDec
| StateDec
| OnEnter
| PriorityList

PriorityList ::= priority StateId {, StateId}
StateId ::= bigLetter {anyFollowing}

A priority list is a mandatory property of a state. The priority list is meant to make
transition collisions deterministic. The priority list for the global state must include all
child states, but a child states priority list does not need to include all of its children. This
is due to priority lists being inherited through states, where a child will only overwrite
the states it sets priority for. This is explained further in section 3.2.10. The following
is the operational semantics for priority list declarations:

var, rel , pri , pares ` 〈Dp, pri〉 −→Dp 〈pri ′〉 〈s, pri ′〉 −→Dp 〈pri ′′〉
var, rel , pri , pares ` 〈s, Dp, pri〉 −→Dp 〈pri ′′〉

(DEC-PRIORITY-LIST)

var, rel , pri , pares ` 〈s, pri〉 −→Dp 〈pri [s 7→ p][next 7→ p+ 1]〉 where p = pri(next)

(DEC-PRIORITY-ELEMENT)

When determining the final transition in a collision, the priority list is checked. If the
current transition has the higher priority, the new transition is discarded. If the new
transition has the higher priority, the current transition is replaced by the new transition.
The following is the operational semantics for transition discarding and replacement:

〈enter( s ), var, sto, nexts〉 −→l 〈var, sto, s〉 where pri(s) > pri(nexts)

(LOCAL-STMT-TRANSITION-REPLACE)

〈enter( s ), var, sto, nexts〉 −→l 〈var, sto, nexts〉 where pri(nexts) > pri(s)

(LOCAL-STMT-TRANSITION-SKIP)
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Substates

Substates in Rios are States within another State, which, just like normal States, defines
which Reactions and Variables are active. Substates in a state is conceptually a seperate
automaton, which means it has its own entry point, meaning it can define its own OnEnter
or Priority List. When an active state has this sub-automaton, it means one of the states
in this automaton will also be active. Because of this, both the active superstates and
the active reactions and variables of the substate are active. This is conceptually the
same as only the bottom-most state being active, with that set of active reactions of the
state, also containing the reactions of the parent state. This can be defined as follows:

Figure 3.4.: Substating and the relationship between State A, B and C.

As seen in fig. 3.4, Reactions and Variables active within a State are a subset of the
total available set of Reactions and Variables in the program. In the case of fig. 3.4 the
elements of the global Reactions set range from Reaction 1 - 4. State B is a Substate
of State A and therefore the Reactions defined in A is also active when B is the active
State. This can be described as:

AllReactions = {R1, R2, R3, R4}
AllV ariables = {V1, V2}

A = {V1, R1, R2}
B = A ∪ {R3}
C = A ∪ {V2, R4}

(3.17)

A special type of state exists in Rios, called a default state, which attempts to simulate the
behavior of the start state mentioned in the I/O automaton thoery. During transitions,
if the transition ends in a state with substates which have been marked as default, the
transition will continue to that state. This will occur continuously until there are no
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substates. This is the same as a start state in an I/O automaton.

var, sto, pri , pares ` 〈state s { Dp Do Dv Dr Ds1 } Ds2, sto, sta
′〉 −→Ds 〈sto′, sta ′′〉

var, sto, pri , pares ` 〈default state s { Dp Do Dv Dr Ds1 } Ds2, sto, sta〉 −→Ds 〈sto′, sta ′′〉
where (pr, po, pp, pc) = sta(pares) and pc = ε and sta ′ = sta[pares 7→ (pr, po, pp, s)]

(DEC-STATE-DEFAULT)

Figure 3.5.: An example state diagram. The diagram illustrates that one can

As an example, consider a state hierarchy as shown in fig. 3.5. If a transition is made
to state A, the transition will continue through the default states, until ending in state
D, triggering all relevant OnEnter statement sequences. If a transition is made to state
B or state E, the transition ends. Likewise, if D had not been the default, it would not
have been possible to transition to C without specifying whether D or E is the default.

OnEnter

Decs ::= {Dec}
Dec ::= V arDec

| ReactDec
| StateDec
| OnEnter
| PriorityList

OnEnter ::= onenter Result

Result ::= : Stmts

An OnEnter is a property of a state, allowing the state to execute a sequence of statements
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before its reactions are evaluated.

s ` 〈ε, sta〉 −→Do 〈sta〉(DEC-ONENTER-EMPTY)

s ` 〈onenter : S, sta〉 −→Do 〈sta ′〉
where sta ′ = sta[s 7→ (r∗, S, pares, childs)]

and (r∗, ε, pares, childs) = sta(s)

(DEC-ONENTER)

The OnEnter is triggered upon a transition to the corresponding state of the OnEnter. It
is possible to run multiple OnEnter statement sequences off of a single transition, as seen
in fig. 3.5. In this case, the OnEnter that are run are found by taking the set consisting
of the next state and its ancestors, and taking its complement with the set of the current
state and its ancestors. Both of these sets should be totally ordered, where element
e1 < e2 if e1 is the child of e2. The resulting set is the set of states whose OnEnter
statement sequences should be run. Formally this can be given as,

OnEntercurrent = {C,E,G}

OnEnternext = {C,F,H}

OnEnterrun = OnEnternext\OnEntercurrent = {F,H}

Meaning, the OnEnter statement sequences to run are the OnEnter defined within state
F and H, in that order. This is also visually represented in fig. 3.6,

A

B C

D E

G

F

H

Figure 3.6.: How Rios determines which OnEnter statements to run
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The following is the operational semantics for executing OnEnter:

〈S, var, sto,nexts〉 −→l 〈var′, sto′,next ′s〉
currs ` 〈s, sto,nexts〉 −→t 〈sto′,next ′s〉

where (−,−, pares,−) = sta(s) and pares ∈ anc(currs)

(TRANS-TOP)

currs ` 〈pares, sto,nexts〉 −→t 〈sto′,next ′s〉 〈S, var, sto′,next ′s〉 −→l 〈var, sto′′,next ′′s〉
currs,nexts ` 〈s, sto,nexts〉 −→t 〈sto′′,next ′′s〉

where (−, S, pares,−) = sta(nexts) and pares /∈ anc(currs)

(TRANS-TRAVERSING)

3.2.3. Reaction

Decs ::= {Dec}
Dec ::= V arDec

| ReactDec
| StateDec
| OnEnter
| PriorityList

ReactDec ::= When

| Always
| Every

When ::= when ExprNum (Result | [(CompOp|BoolOp)] Cases)
Always ::= always Result

Every ::= every IntLiteral Unit (Result | When)

Cases ::= Case {Case}
Case ::= | [(CompOp|BoolOp)] Expr Result

Result ::= : Stmts

A Reaction is an combination of the action types highlighted within the I/O automaton
theory, see 3.1.3.

〈c, rel〉 −→rel 〈rel ′〉 var, sto, pri , s ` 〈Dr, sta ′, rel ′〉 −→Dr 〈sta ′′, rel ′′〉
var, sto, pri , s ` 〈when c Dr, sta, rel〉 −→Dr 〈sta ′′, rel ′′〉

where sta ′ = sta[s 7→ sta(s) ∪ {(c, var)}]

(DEC-REACTION)

var, sto, pri , s ` 〈ε, sta, rel〉 −→Dr 〈sta, rel〉(DEC-REACTION-EMPTY)
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Due to the nature of those action types the Reaction requires an input, either given
externally or internally which will satisfy its condition.

〈c, var′, sto, nexts〉 −→l 〈var, sto′, next ′s〉
sta, rea ` 〈{..., r, ...}, sto, currs,nexts〉 =⇒g 〈{..., ...}, sto′, currs,next ′s〉

where (c, var′, pri) = r

(GLOBAL-REACTION)

When a the condition of a Reaction is satisfied the corresponding user-specified case will
be executed.

〈S, var, rel〉 −→rel 〈var, rel ′〉 〈c, var, rel ′〉 −→rel 〈var, rel ′′〉
〈e : S c, var, rel〉 −→rel 〈var, rel ′′〉

(DEC-CAS)

〈ε, var, rel〉 −→rel 〈var, rel〉(DEC-CAS-EMPTY)

The execution of the case is always done in an imperative manner. The expression
in each active Reaction is continuously and perpetually evaluated while a program
runs, conceptually reacting immediately upon the condition evaluating to true. This
implies the possibility of needing to execute several Reactions simultaneously, which
could potentially lead to conflicts over the order and manner to execute the Reactions.

〈ε, var, sto, nexts〉 −→l 〈var, sto, nexts〉(LOCAL-EMPTY)

〈S, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉
〈e : S c, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉

where e −→e true

(LOCAL-CASE-TRUE)

〈c, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉
〈e : S c, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉

where e −→e false

(LOCAL-CASE-FALSE)

3.2.4. Reaction Collision

Since Reactions conceptually run at the same time, ambiguity could arise in certain
situations.

1 x starts as 0

2 reaction resulting in print(x)

3 reaction resulting in x = x + 5

Figure 3.7.: Pseudo code of a Reaction collision.

In fig. 3.7 two Reactions are shown. Incrementing x by 5 and printing it at the same
time, can be somewhat ambiguous as to whether the current value of x, at the time
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of incrementing, or the updated value of x, after incrementing, is printed. The above
Reactions could be printing either ”0 5 10 ...” or ”5 10 15 ...”. This ambiguity can make
it difficult to understand the interactions between and reactions, and if allowed to exist,
would make generated programs more unreliable without a specified behaviour priority
system.

Figure 3.8.: Instructions to run

Another way to illustrate this ambiguity is shown in fig. 3.8. The figure shows five
arbitrary Reactions, and some instructions which have to be run after each Reaction has
been evaluated. As mentioned earlier these reactions will conceptually run at the same
time, but it would cause the program to become non-deterministic. This means that if
a read reaction, and a write reaction were to be executed, the compiler would not be
able to decide which to choose. This is exemplified in fig. 3.7, where the outcome of the
instructions will differ depending on which order the instructions are executed. One way
to handle this is by sorting the reactions based on their dependencies.

Figure 3.9.: Instructions with dependency ordering shown
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Such dependencies can be illustrated with fig. 3.9, where the directions show which way
the data flows from supplying Reactions to consuming Reactions. This shows that for
these reactions, there are 2 groupings of reactions that can be run simultaneously, as
they have no dependence on each other. It does not matter if the Reaction resulting in
print(’hello’) is executed before, simultaneously, or after the rest of the instructions.
This is essentially thinking of each reaction as a ’rule’, where the most independent rules
are evaluated before the dependent rules.

However, sorting the Reactions to first evaluate the most dependent rules is also an op-
tion. Essentially, this changes the conception behind Reactions from rules, and moves
towards having an equivalency in Reactions. Where conceptually all Reactions are eval-
uated and their respective code is executed in unison. This sorting method ensures that
given each ’cycle’, a cycle being a single iteration of evaluating all active reactions, all
said reactions are evaluated and executed conceptually simultaneously/parallel to each
other. The main difference between these two sorting methods is essentially their ’speed’.
Given no state transitions, both methods should always execute the same reactions, but
at different times. In this regard, each have their benefits, consider the program of an
emergency airbag system for a car crash, at fig. 3.10

1 //speed is an int and determines the speed of the vehicle

2 //might_be_crashed, engine_broken and crashed are all booleans which

↪→ describe the state of the vehicle

3 reaction resulting in might-be-crashed = true if speed is 0

4 reaction resulting in crashed = true if engine_broken and

↪→ might_be_crashed both are true

5 reaction resulting in the activation of airbags if crashed is true

Figure 3.10.: Pseudo code of a Reaction collision.

In fig. 3.10 solving the problem by evaluating the independent reactions first is most
beneficial. Picture the instant speed of the vehicle reaches 0, then the first reaction will
run which allows the second reaction to run and finally allows the last reaction to be
executed. However, sorting dependent first, means we have to wait three cycles before
reaching the same point. As in the first cycle ’might_be_crashed’ is set to true after the
other two reactions have already been evaluated. Then in the second cycle ’crashed’ is
set to true, which finally allows the last reaction to run in the beginning of the following
cycle. In this case, the speed of executing independent reactions first is valued highly.
Now consider another example, shown in fig. 3.11.
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1 //temperature is an int that causes a state change if it reaches or

↪→ exceeds a threshold

2 reaction resulting in updating temperature

3 reaction resulting in state change if temperature >= threshold is true

Figure 3.11.: Pseudo code of a Reaction collision.

In 3.11 having a slower approach yields a higher accuracy. The cycle where the second
Reaction evaluates to true, would then have an additional cycle immediately afterwards
where the state transition is executed, and the temperature is updated one final time,
ensuring the variable is completely up to date before moving on. In this case, an increased
accuracy is desirable. However, it should be mentioned that this same result is also
possible by sorting independent first. Imagine if the second reaction also updated the
temperature, in this case we would be able to slow down the fast approach, to a more
suitable pace. Do note however, that in doing so sacrifices readability in making the
program more verbose and reactions multi-purposed. Because of this versatility giving
by sorting independent Reactions first, Rios (by default) runs Reactions that declare or
change variables, before the Reactions that would use those variables.

The problem regarding the Reaction collisions still exists if there is more than one Re-
action which changes the same variable. To avoid this, changing a variable in multiple
Reactions in a single state is not permitted in Rios, if the order cannot be implied.

The following are the operational semantics regarding reactions:

var, rel , pri ` 〈Ds, sto, sta〉 −→Ds 〈sto′, sta ′〉
sta, rea ` 〈Ds〉 =⇒g 〈∅, sto′, Global, ε〉

where var, sto, rel , pri , sta = ∅⇀ ∅

(GLOBAL-STARTER)

〈c, var′, sto, nexts〉 −→l 〈var, sto′, next ′s〉
sta, rea ` 〈{..., r, ...}, sto, currs,nexts〉 =⇒g 〈{..., ...}, sto′, currs,next ′s〉

where (c, var′, pri) = r

(GLOBAL-REACTION)

currs ` 〈nexts, sto, ε〉 −→t 〈sto′,next ′s〉
sta, rea ` 〈∅, sto, currs,nexts〉 =⇒g 〈{r1, r2 , ..., ri}, sto′,nexts,next ′s〉
where ({r1, r2 , ..., ri}, S, pares, childs) = sta(nexts) and childs = ε

(GLOBAL-EMPTY-TRANSITION)

The above semantics describe how the reaction queue begins, how reactions are run (or
not), and how the queue is refilled. Additionally, the rules for moving reactions in the
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queue is given as concatenation and insertion rules.

sta, rea ` 〈{..., r1, ..., r2, ...}, sto, currs,nexts〉 =⇒g 〈{..., r2; r1, ...}, sto, currs,nexts〉

where
∃l ∈ rel(r2,writer) : l ∈ rel(r1, reader)

∀l ∈ rel(r1,writer) : l /∈ rel(r2,writer) ∪ rel(r2, reader)

(GLOBAL-MERGE-CONCATENATE)

sta, rea ` 〈{..., r1, ..., r2; r3, ...}, sto, currs,nexts〉 =⇒g 〈{..., r2; r1; r3, ...}, sto, currs,nexts〉

where

∃l ∈ rel(r2,writer), l ∈ rel(r1,writer)

∃l ∈ rel(r1,writer), l ∈ rel(r3, reader)

∀l ∈ rel(r3,writer), l /∈ rel(r1, reader) ∪ rel(r1,writer)

∀l ∈ rel(r3,writer), l /∈ rel(r2, reader) ∪ rel(r2,writer)

∀l ∈ rel(r1,writer), l /∈ rel(r2, reader) ∪ rel(r2,writer)

(GLOBAL-MERGE-INSERT)

3.2.5. Variables

Decs ::= {Dec}
Dec ::= V arDec

| ReactDec
| StateDec
| OnEnter
| PriorityList

V arDec ::= Type Id Assign Expr

Type ::= apin | dpin | serial | int | bool | byte | float | long
Id ::= smallLetter {anyFollowing}

smallLetter ::= a . z

anyFollowing ::= a . z + A . Z

Assign ::= =

In Rios, a Variable is an identifier coupled with some value. Variables can be datatypes
like numbers, strings, characters, pins or states. In Rios, Variables are in one of two dif-
ferent scope types, which will be described in section 3.2.5 and section 3.2.5 respectively.

Local Variables

Variables can be declared in reactions. These Variables can only be used in the reaction
in which they are declared, and are discarded as soon as the reaction has completed. If
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the reaction is run again, the Variable is defined again.

var, sto ` e −→e v

〈t x = e, var, sto, nexts〉 −→l 〈var′, sto′, nexts〉
where l = sto(next) and var′ = var[x 7→ l][next 7→ next(l)] and sto′ = sto[l 7→ v]

(LOCAL-STMT-VAR-DEC)

State Variables

Variables can also be declared in a state. The Variables declared in the state can be
used by all reactions contained within the state, including reactions in substates. These
Variables live for all of the programs duration, so when the state is exited and then
reentered, the variables still maps to the old value. As Rios uses static scoping, Variables
in a substate can have the same name as Variables a parent State, but they will be
treated as different entities.

The following are the operational semantics regarding variables:

var, sto ` var, sto ` x −→e v where v = sto(var(x))(VAR-REF)

var, sto ` 〈e, var, sto〉 −→e v 〈Dv, var, sto〉 −→Dv 〈var′, sto′〉
〈t x = e Dv, var, sto〉 −→Dv 〈var′[x 7→ l], sto′[l 7→ v][next 7→ next(l)]〉

where l = var[next]

(DEC-VAR)

〈ε, var, sto〉 −→Dv 〈var, sto〉(DEC-VAR-EMPTY)

〈e, var, rel〉 −→rel 〈var′, rel ′〉
〈t x = e, var, rel〉 −→rel 〈var′[x 7→ var(next)], rel ′〉

(DEC-STMT-VAR)

〈x, var, rel〉 −→rel 〈var, rel [(x, reader) 7→ rel(x, reader) ∪ {r}]〉(DEC-EXPR-VAR)
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3.2.6. Statements

Stmts ::= [ Stmt {; [Stmt]} ]
| Stmt

Stmt ::= V arDec

| TransitionStmt
| Expr [{, Expr} (CompAssign|Assign) Expr]

TransitionStmt ::= transition ( StateId )

Calls ::= read

| toggle
| write
| println

Statements are imperatively executed instructions in a program in Rios. Statements can
be chained together in sequences, with each statement being separated by semicolons. A
sequence of statements is always encapsulated in a pair of square brackets.

〈S1, var, rel〉 −→rel 〈var′, rel ′〉 〈S2, var
′, rel ′〉 −→rel 〈var′′, rel ′′〉

〈S1; S2, var, rel〉 −→rel 〈var′′, rel ′′〉
(DEC-STMT-SEQ)

〈S1, var, sto, nexts〉 −→l 〈var′, sto′, next ′s〉 〈S2, var
′, sto′, next ′s〉 −→l 〈var′′, sto′′, ′′〉

〈 S1; S2, var, sto, nexts〉 −→l 〈var′′, sto′′, ′′〉

(LOCAL-STMT-SEQUENCE)

Statements are semantically instructions, telling what operation to execute. Transition
instructions are covered in section 3.2.8, and variable declaration instructions are covered
section 3.2.5.

〈x = e , var, sto, nexts〉 −→l 〈var, sto[l 7→ v], nexts〉
where var, sto ` e −→e v and l = var(x)

(LOCAL-STMT-ASS)

〈S, var, rel〉 −→rel 〈var, rel〉 where S ∈ {ε, transition( s )}
(DEC-STMT-IGNORE)

〈e, var, rel〉 −→rel 〈var′, rel ′〉
〈x = e, var, rel〉 −→rel 〈var′, rel ′[(r,writer) 7→ rel(r,writer) ∪ {l}]〉

where l = var(x)

(DEC-STMT-ASS)

(3.18)
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3.2.7. Expressions

Expr ::= ExprBool

ExprBool ::= ExprComp [BoolOp ExprBool]

ExprComp ::= ExprNum [CompOp ExprComp]

ExprNum ::= ExprProduct [NumOp1 ExprNum]

ExprProduct ::= ExprNegate [NumOp2 ExprProduct]

ExprNegate ::= [!] ExprCall

ExprCall ::= ExprSingle [[. Calls] ( [Expr {, Expr}] )]

ExprSingle ::= Literal

| Id
| ( Expr )

Literal ::= IntLiteral

| ByteLiteral
| LongLiteral
| FloatLiteral
| PinLiteral
| SerialLiteral
| StringLiteral
| BoolLiteral

Calls ::= read

| toggle
| write
| println

An expression is a legal statement in the Rios language, such as the ability to negate
a statement or compare two same typed variables with each other, except values of the
void type.
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〈e1, var, rel〉 −→rel 〈var, rel ′〉 〈e1, var, rel
′〉 −→rel 〈var, rel ′′〉

〈e1 op e2, var, rel〉 −→rel 〈var, rel ′′〉
where op ∈ {+, -, *, /, ==, !=, <, >, <=, >=, ||, &&}

(DEC-EXPR-BIN)

〈e, var, rel〉 −→rel 〈var, rel ′〉
〈!e, var, rel〉 −→rel 〈var, rel ′〉

(DEC-EXPR-SIN)

〈n, var, rel〉 −→rel 〈var, rel〉(DEC-EXPR-NUM)

A Single expression type is the natural value found. As such, no changes are made to
the actual expression and no operators are applied.

var, sto ` var, sto ` n −→e v where N (n) = v(EXPT-NUMERAL)

var, sto ` var, sto ` x −→e v where v = sto(var(x))(VAR-REF)

var, sto ` ( e ) −→e v(EXPR-PARENTHESIS)

A call is an operation that is accessed by adding a postfix . and then one of the four call
operations. All of the call operations require a parameter, and then return a value of the
type void. Naturally, read is excluded from this rule, as it simply returns the written
value on the specified pin. The read and write calls can be called on any pin, digital or
analogue.

var, sto ` x.read() −→e v where v = the value of the pin at sto(var(x))

(EXPR-PIN-READ)

var, sto ` e −→e v1

var, sto ` x.write( e ) −→e v2

where The pin is set to v and v2 = void
(EXPR-PIN-WRITE)

On the contrary, toggle can only be used on a dpin, and println can not be applied to
a pin at all. The toggle call can be used on a digital pin or a Boolean variable. The call
will negate the value of the given pin or Boolean, setting it high if it is low or vice versa.
The println attempts to print a given parameter.

var, sto ` x.toggle −→e v

where The pin is set to the opposite possible value and v = void

(EXPR-PIN-TOGGLE)

var, sto ` e −→e v1

var, sto ` x.println( e ) −→e v2

where Write v1 to the serial connection at sto(var(x)) and v2 = void

(EXPR-SERIAL-PRINTLN)
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Given that calls are pin type dependent, implies the valid values for an analogue pin and
a digital pin are not the same. An analogue pin will accept a write of, and return a read
of the type int. A digital pin will accept a write of as well as a toggle, and return a read
of the type bool.

Any expression type may be inverted at any time, this utilises the Negate expression
type. The inversion seen here is similar to that in mathematics.

var, sto ` !e −→e true where e −→e false(EXPR-NEGATE-TRUE)

var, sto ` !e −→e false where e −→e true(EXPR-NEGATE-FALSE)

On the other hand, expression types such as Num and Product mathematically simpli-
fies an expression, returning the simplified product of the respective operation. These
expression types covers all available operations found within elementary arithmetic, and
follow the order of operations found within mathematics.

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 + e2〉 −→e v
where v = v1 + v2(EXPR-ADD)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 - e2〉 −→e v
where v = v1 − v2(EXPR-SUB)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 * e2〉 −→e v
where v = v1 · v2(EXPR-MULT)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 / e2〉 −→e v
where v = v1

v2
(EXPR-DIV)

The Comp expression type attempts to test whether a relation given by a comparative
operator is true or false.
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var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 == e2〉 −→e true
where v1 = v2(EXPR-EQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 == e2〉 −→e false
where v1 6= v2(EXPR-EQUAL-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 != e2〉 −→e true
where v1 6= v2

(EXPR-NOTEQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 != e2〉 −→e false
where v1 = v2

(EXPR-NOTEQUAL-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 < e2〉 −→e true
where v1 < v2

(EXPR-LESSTHAN-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 < e2〉 −→e false
where v1 > v2

(EXPR-LESSTHAN-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 > e2〉 −→e true
where v1 > v2

(EXPR-BIGGERTHAN-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 > e2〉 −→e false
where v1 < v2

(EXPR-BIGGERTHAN-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 <= e2〉 −→e true
where v1 = v2 ∨ v1 < v2

(EXPR-LESSTHANOREQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 <= e2〉 −→e false
where v1 > v2

(EXPR-LESSTHANOREQUAL-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 >= e2〉 −→e true
where v1 = v2 ∨ v1 > v2

(EXPR-GREATERTHANOREQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 >= e2〉 −→e false
where v1 < v2

(EXPR-GREATERTHANOREQUAL-FALSE)

The final expression type is Bool type, which may extend the number of premises neces-
sary to reach a conclusion. It tests whether the relationship between two states can be
expressed with a given Boolean operator.
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var, sto ` e1 && e2 −→e true where e1 −→e true ∧ e2 −→e true

(EXPR-BOOLAND-TRUE)

var, sto ` e1 && e2 −→e false where e1 −→e false ∨ e2 −→e false

(EXPR-BOOLAND-FALSE)

var, sto ` e1 || e2 −→e true where e1 −→e true ∨ e2 −→e true

(EXPR-BOOLOR-TRUE)

var, sto ` e1 || e2 −→e false where e1 −→e false ∧ e2 −→e false

(EXPR-BOOLOR-FALSE)

Operator Precedence Rules

While the precedence rules for Rios can be extracted from the specified CFG, a simplified
table is presented in 3.2.7 which shows all operator precedents. The table consists of four
parts: The priority, where the higher the number the higher priority; Operator and
description, which shows the operator and a relevant description for the operator in
question; Associativity, which determines the order of processing should an expression
contain operators with the same precedence.

Precedence Operator Description Associativity
1 () Subexpression Left to Right
2 () Calls Left to Right
3 ! Logical negation Left to Right

4 * Multiplication Left to Right
/ Division

5 + Addition Left to Right
- Substraction

6

== Equality

Left to Right

!= Inequality
<= Less than or equal to
>= Greather than or equal to
< Less than
> Greater than

7 && Logical AND Left to Right
|| Logical OR

8 = Assignment Left to Right

Table 3.1.: Overview of operator precedence rules.
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3.2.8. Transition

Stmts ::= [ Stmt {; [Stmt]} ]
| Stmt

Stmt ::= V arDec

| TransitionStmt
| Expr [{, Expr} (CompAssign|Assign) Expr]

TransitionStmt ::= transition ( StateId )

Transitions in Rios is a way to simulate a transition relation (s′, π, s), meaning that for
every state s’ and input action π there is a transition resulting in s.

〈enter( s ), var, sto, ε〉 −→l 〈var, sto, s〉(LOCAL-STMT-TRANSITION-FIRST)

〈enter( s ), var, sto, nexts〉 −→l 〈var, sto, s〉 where pri(s) > pri(nexts)

(LOCAL-STMT-TRANSITION-REPLACE)

〈enter( s ), var, sto, nexts〉 −→l 〈var, sto, nexts〉 where pri(nexts) > pri(s)

(LOCAL-STMT-TRANSITION-SKIP)

Given that Rios does not make use of input actions as a concept, but rather as part of
the greater idea of reactions, transitions are exclusively limited to reactions simulating
the behaviour of an input action. However, because of the versatility of the reaction and
its ability to limit itself to replicate an input action, it is possible to program a language
in Rios which only relies on input actions to cause transitions, therefore simulating an IO
automata. From a semantic viewpoint, this is handled via a reaction-queue. This queue
works by taking a set of reactions held within a state and adding them to the queue as
explained in section 3.2.8. When the program encounters an enter command it queues
the transition, resolves the remaining reactions within the reaction queue, and fills the
reaction-queue with the contents of the new state and its associated states.

Transition Collision

In some cases, a program can encounter multiple actions that demand the program to
jump to different states. This actions is referred to as a transition-collision, and has
a specific set of semantic rules to solve such problems. A Transition collision occurs
when multiple Reactions wish to transition to different States in the same cycle. The
Transition-collisions cannot be handled in the same manner as the Reaction-collisions due
to the lack of dependencies. Therefore, making a inferred ordering of the state changes
is not an option.
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Figure 3.12.: A case where transitions can collide.

An example of this is illustrated in fig. 3.12, where both R1 and R2 could evaluate to
true. Rios solves which to pick through an implicit ordering priority, or by a user-defined
priority list. The priority list must include a number of states, placed on the list in a
sequential fashion, where the first entry is the most important, and the last entry is the
least. For states not in the list, or in the case of no list being defined, a compiler error
will be issued instead.

The operational semantics for transitions is as follows:

sta, rea ` 〈∅, sto, currs,nexts〉 =⇒g 〈∅, sto, currs,next ′s〉
where (−,−,−,next ′s) = sta(currs) and curr ′s 6= ε

(GLOBAL-EMPTY-TRAVERSE)

currs ` 〈nexts, sto, ε〉 −→t 〈sto′,next ′s〉
sta, rea ` 〈∅, sto, currs,nexts〉 =⇒g 〈{r1, r2 , ..., ri}, sto′,nexts,next ′s〉
where ({r1, r2 , ..., ri}, S, pares, childs) = sta(nexts) and childs = ε

(GLOBAL-EMPTY-TRANSITION)
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3.2.9. Types

Unit ::= d | h | m | s | ds | cs | ms
Type ::= apin | dpin | serial | int | bool | byte | float | long

BoolLiteral ::= true | false | high | low
PinLiteral ::= (a | analog | d | digital) @ [A] IntLiteral [pullup]

SerialLiteral ::= $ (usb | pin) IntLiteral

StringLiteral ::= " {notQuote} "
IntLiteral ::= digit {digit}

LongLiteral ::= digit {digit} L
ByteLiteral ::= digit {digit} B
FloatLiteral ::= digit {digit} . [digit {digit}]

digit ::= 0 . 9

Byte, int, & long

A byte, int or long is an integer n ∈ Z. Byte is represented by the smallest data on a
given platform, usually assumed to be a byte of 8 bits. Int is represented is given by a
platform’s word size, while a long is given by a platform’s double-word size.

As an example, a platform has a byte size of 8 bits, a word size of 16 bits and a double-
word size of 32 bits. On this platform a byte can contain values ranging from −28−1 to
28−1 − 1 or −128 to 127. An int can contain values ranging from −216−1 to 216−1 − 1 or
−32.768 to 32.767, and a long can contain values ranging from −232−1 to 232−1 − 1 or
−2.147.483.648 to 2.147.483.647

Float

A float is a number n ∈ Q. Float is represented by the given platforms implementation
of float. For example, most arduino platforms implement floats as a 4-byte datatype,
giving a range of numbers from 3.4028235 · 1038 to −3.4028235 · 1038. In general, as the
value of a float gets further from 0, its accuracy decreases, simply due to how the float
is read as binary data.

Apin and Dpin

Rios utilises two custom types revolving around pins found on microcontrollers. Instead
of using a basic integer type to define pins and set their pin mode, they are instead given
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a pin type that comes with a pre-defined set of properties. An apin is a representation
of analogue pins on a given microcontroller platform. As such, the given apin can be
used for any purpose an analogue pin can be used for, on a given platform. Likewise,
a dpin is a representation of a digital pin, which can be used as any digital pin on a
given platform. These pin types serve as the primary means of communicating with the
outside world within Rios.

As an example, if there were to occur a situation in which an apin was to be used for
turning on an LED. Said pin would be defined using a structure akin to apinled = a@13.

Serial

The idea of the serial connection in Rios is reminiscent of the one present in Arduino
Language. It is used as the primary communication medium between an Arduino board
and a computer or other device like a serial monitor. The major difference from Arduino
Language is that a programmer can define more than one serial connection in Rios,
enabling programs to deal with multiple devices at the same time directly from the
Arduino board - whether it is with other Arduino boards, or computers.

Bool

A bool is a type that represent a boolean value. The reasoning for having two different of
ways of writing a bool is due to users from the Arduino Language being more accustomed
to high and low, while users from other programming language may find true and false
more familiar.

The types rules of Rios can be found in Appendix D

3.2.10. Static Scoping

Rios uses static scoping, applying it to many concepts in the language. Scopes are en-
capsulated by states and reactions, with reaction scopes being created per case evaluated
in the reaction. For example, a reaction with two cases to evaluate can have variable X
in one and variable Y in the other. Each variable can be accessed in the own cases, but
cannot be accessed from the other.

The reasoning behind picking static over dynamic scoping was two-fold. One reason
was that it was decided during the design phase, that Rios should resemble C++ and
Arduino Language, both of which have static scoping. The other reason was based in
the fact that it was easier to implement with the I/O automata being employed. This is
because of the way environments are saved within static scopes. When employing static
scopes the variable environment can be stored as is, whereas it is necessary to change
the environment every time a change occurs within dynamic scoping.
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States and Priority Lists

States is the part of Rios that most resembles C or Java-like scopes. Variables in states
can be accessed by reactions and substates contained by the state. This applies recur-
sively for any substates. In the case of a priority list in both a child and parent, a given
reaction uses the priority list in its containing scope. Subsequent scopes with new pri-
ority lists may specify less states than the parent list, in which case the child priority
"overwrites" the specified states. For example, consider two priority lists like so:

ParentPriority := A,B,C,D

ChildPriority := C,A

The resulting priority list in the child would be {C, A, B, D}, while the priority list for
the parent would remain {A, B, C, D}. A reaction in the parent state would then use
the parents priority list, while a reaction in the child state would use the childs priority
list.

Reactions

Reactions are not widely affected by static scoping, apart from cases having individual
scopes. For example, if a reaction is given as

1 when x <

2 | 10 : [int y = 1]

3 | 5 : [int z = 1]

then the case on line 2 would not be able to access variable z, and the case on line 3
would not be able to access variable y.

Variables

Variables can only be accessed by their encapsulating scope and any subscopes of it. If
a variable of the same name is declared in a subscope, the new variables is used in the
following code.

3.3. Summary of Chapter 3

In this chapter, the initial requirements for Rios were presented, as well as how they
were fulfilled. Additionally, the core concepts and types that the language implements
were also defined, as well as how these work in practice. Finally, was the grammar for
the language and the semantic definitions for the different concepts and types in the
language.
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By reading this chapter, readers should have gained an understanding of the fundamental
constructs within Rios, as well as gained an overview of the inter-dependencies that each
production has. Additionally, the reader should have insight into the conditions, set forth
by the authors, that Rios should be able to fulfil, before being classified as a complete
system.
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4. The Compiler

When using a language, either for programming or other linguistic purposes, humans use
commonly accepted constructs. Likewise, a computer uses syntax to understand which
productions to commit to. To go from written words to a semantically equivalent, but
entirely different language, or even low-level machine code, it is necessary to create a
mapping between the two. This is where a compiler is used.

This chapter describes the process of how the Rios compiler was built. The chapter gives
a thorough explanation of the various modules that the Rios compiler consists of, and
the associated design choices of said modules.

4.1. Understanding the Compiler

At its core, a compiler converts code in a given programming language to another target
language. It does this via multiple lesser modules that each handle a part of the com-
pilation process. There are many ways of assembling a compiler, all dependent on the
context it is used in. The basic structure can be seen within Figure 4.11.5. Organization of a Compiler 15

Interemediate
Representation

Decorated
AST

Interemediate
Representation

Source
Program

Tokens AST

Target Code

Scanner

Symbol Tables

Type Checker

Translator

Optimizer

Code Generator

Parser

Figure 1.4: A syntax-directed compiler. AST denotes the Abstract
Syntax Tree.

• Analysis of the source program being compiled

• Synthesis of a target program that, when executed, will correctly perform
the computations described by the source program

Almost all modern compilers are syntax-directed. That is, the compilation
process is driven by the syntactic structure of the source program, as recog-
nized by the parser. Most compilers distill the source program’s structure into
an abstract syntax tree (AST) that omits unnecessary syntactic detail. The
parser builds the AST out of tokens, the elementary symbols used to define a
programming language syntax. Recognition of syntactic structure is a major
part of the syntax analysis task.

Semantic analysis examines the meaning (semantics) of the program on
the basis of its syntactic structure. It plays a dual role. It finishes the analysis
task by performing a variety of correctness checks (for example, enforcing type
and scope rules). It also begins the synthesis phase.

In the synthesis phase, source language constructs are translated into an
intermediate representation (IR) of the program. Some compilers generate
target code directly. If an IR is generated, it then serves as input to a code genera-
tor component that actually produces the desired machine-language program.
The IR may optionally be transformed by an optimizer so that a more efficient
program may be generated. A common organization of all of these compiler
components is depicted schematically in Figure 1.4. Each of these components

Figure 4.1.: The different modules of a compiler. The example is taken from Crafting a
Compiler [16, p. 15].

The scanner, also called the lexer, begins the analysis of a program by reading the input
text and grouping individual characters together. It creates a stream of an abstracted
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data-type in the form of tokens, based off of these terminal strings. It then eliminates
unneeded information like whitespace, and processes compiler directives. In addition to
this, the scanner in some compilers will in some cases enter preliminary information into
symbol tables, as well as format and list the source program. [16, p. 16]

The parser reads tokens from the scanner and groups them in accordance with a given
syntax specification. The parser verifies correct syntax, and if errors are found, issues
suitable error messages. In some cases it can try to repair errors or continue execution
in spite of the errors. The parser usually builds an Abstract Syntax Tree, which serves
as the basis for semantic processing. [16, p. 16-17]

The type checker checks the static semantics of each AST node, by ensuring that the
constructed node represents a legal and meaningful construct. If proven to be correct,
the type checker will add type information to the node. If this turns out not to be the
case, the type checker will instead issue suitable error messages. [16, p. 17]

The translator takes the AST nodes created by the type checker, and turns them into
intermediate representation (IR) code, that implements the meaning of the AST nodes.
An AST node of an if statement, has no indication as to have to behave. It is not until
the translator handles this node, that the notion of testing a value, and conditionally
running the statement is created. [16, p. 17]

The optimiser improves upon the IR code by simplifying, moving or removing unneeded
components. The optimisation process is often done multiple times, and can take place
both before and after the code generation stage. [16, p. 19]

The code generator maps the IR code to machine code for the system that needs to run it.
This is done by collecting extensive amounts of information about the target machine,
such as register allocation and code scheduling. While the other parts of a compiler
can be automatically generated by various tools, the code generator is often created by
hand. This is because machine-specific optimisation requires consideration for special
cases unique to the target system. [16, p. 19]

Symbol Tables is a mechanism used across the various compiler phases. It allows for
information to be associated with identifiers, that can be saved and used across compiler
phases. This means that whenever an identifier is declared, the symbol table provides
all the information collected about it across all compiler modules. [16, p. 18]

4.1.1. Understanding the Rios Compiler

The model for the Rios compiler differs slightly from the standard model depicted in
section 4.1. The reasoning behind the difference is mainly because of the reactions shown
in section 3.2. Ideally, Rios should handle all reactions simultaneously, but this is not
feasible due to most Arduino boards not allowing multithreading. Because of this, some
changes to the compiler modules were made to allow for handling and prioritising said
reactions in accordance with rules of determinism within syntax design. The compiler
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structure used within Rios can be viewed within Figure 4.2. All of the intricacies of
the different phases, and all associated choices, will be explained in depth in subsequent
sections, but a rudimentary explanation will first be made here.

Figure 4.2.: The compiler structure employed within Rios

The Rios lexer works much like the scanner explained in section 4.1. It reads the input
text and groups individual characters together into tokens. The only deviation is that
it refrains from inserting anything into symbol tables. This is because of the reactions
found within the language. Reactions in Rios are dependent on the scope they reside
in, and as such, requires that all scopes are created, before being able to insert them
into symbol tables. This is instead handled within the symbol registrator and symbol
checker.

The Rios parser is designed to do the things explained within the parser in section 4.1.
It is modelled to be a recursive-descent parser working on an LL(1) grammar. Other
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than this, the parser is mostly ordinary.

The Rios transformer is a module that does two things. First, it creates a global state
node, that serves as a wrapper for all the actual states within a given program being
compiled. Secondly, it locates different syntactic constructs defined in the language, and
changes them to be uniform to each other.

The Rios symbol registrator is a separate module that enters preliminary information
into the symbol table. As mentioned in the lexer, this is a function that can normally be
done by the scanner. However, because Rios works almost exclusively via states, these
states have to be generated before symbols can be checked. The way this works, is that
whenever a state has to be checked for symbols, it will be put on the stack, and then
checked for new symbols that will be added to the symbol table. That scope will then
be popped from the stack, when the symbol registration process for that state is done.

The Rios symbol checker checks the symbol registrations found within a program. It
checks that symbols are used as intended and in some cases makes new nodes. These
new nodes are references to the original nodes visited. This is done because of the
depth-first visitor patterns used within Rios. These new child nodes are used by the
transformer when it visits the various scopes. Because the transformer starts at an
arbitrary declaration, it might in some cases need to change parental nodes, which is
where these new nodes are used, as the old nodes cannot be assigned new parents.

The Rios type checker makes sure that values match the corresponding type declared.
There is no coercion within Rios, meaning that types will not be converted to other types
to make an expressions valid. As an example, int types can only be used with other int
types, and not float types or bool types. As such, the type checker validates whether
operations are legal, by checking if declared values match their inferred type.

The Rios reaction sorter changes the specific imperative ordering of reactions within
states. When a program is run, the reaction sorter runs a topological sort that sorts
write actions to variables before read actions of variables. This means that operations
that change variables will happen, and then operations that read and act based off of
that, will be run second. As a result, reaction sorting is where potential reaction collisions
are handled. As the program, on a fundamental level, runs in an imperative fashion, this
module makes sure that no two reactions are run at the same time.

The Rios code generator traverses the tree and uses that to create code. Rios compiles
down to the Arduino Language as an IR language. From there it goes through the
Arduino-pipeline and ends up as low-level machine code.

4.2. The Rios Lexer

The lexer for Rios is simple by design. When called upon, the lexer will analyse the
input source code until a token can be created. Once this is done, the token is returned,
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and the lexer stops until it is once again caled upon by the parser. How the parser does
this, will be further described in section 4.4 and section 4.5. The tokens created contain
information about their type (operators, reaction type, parentheses, brackets, etc.) and
their value ("==", "[", "variableName", "123", etc.). Tokens also contain info about
which line of code, and how far into the line, it occurs. This sequential approach, that
handles each part of input strings systematically, makes debugging easy. Because of this
approach, the compiler knows exactly where an error occurs, if a user creates bad quote,
thus resulting in very precise compiler errors.

4.3. Lexer Generating Tools

There are a number of tools that can generate lexers automatically, when given a CFG.
These will analyse the CFG and generate a lexer that can recognise an input conforming
to the CFG. The project has considered ANTLR, COCO/R, and manual creation to cre-
ate a lexer and parser, with the final lexer being made manually. ANTLR and COCO/R
will be discussed in section 4.5.1 and section 4.5.2 respectively.

As mentioned previously, the lexer works when called by the parser, creating a token
stream as the tokens are needed. An alternative method of lexing stems from the idea
of the lexer being run once, creating a list of tokens from the source program as output.
The group chose the former method. This meant that instead of creating automaton-like
structure, it was opted to pick the always pick a simpler and more maintainable solution,
at the cost of some performance.

4.4. Picking a Parsing Approach

The two most widely-used parsing approaches are LL(k) or LR(k), often referred to
as top-down and bottom-up parsers respectively [16, p. 126]. LL(k) and LR(k) are
abbreviations, indicating how the parser handles input, which kind of parser is created,
and how many tokens can be peeked ahead. In both parsing techniques, the first letter
stands for left-to-right, and indicated that the parser will start at the leftmost token,
and move towards the right when processing input. The second letter, is where the
parsing techniques vary, and stands for either leftmost derivation or rightmost derivation
in reverse. Leftmost derivation always picks the leftmost nonterminal in every possible
situation, adding elements to the parse tree in a depth-first fashion [16, p. 116]. Rightmost
derivation, on the other hand, always picks the rightmost nonterminal for any situation.
Additionally, it traces the derivations and applies them in reverse order. The last step will
be the first element added to the parse tree, and the first step will be the last, much akin
to how a topological search is conducted [16, p. 116-117]. Lastly k, also called lookahead,
defines how many tokens the parser can peek ahead of the current token, when deciding
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which production to apply [16, p. 146]. For the purposes of Rios we henceforth assume
that lookahead will be equivalent to k = 1 for all parsing methods in consideration.

4.4.1. Ambiguity

Within grammars, ambiguity is one of the most important things to consider. In this
context, it refers to a situation where a grammar can derive more than one parse tree
for its terminal strings. The reason many compilers require an unambiguous grammar is
because, ambiguous grammars make it so that the compiler cannot guarantee a unique
translation for all inputs. [16, p. 121] An example of this can be seen below in Figure 4.3:

4.2. Properties of CFGs 121

Expr

Expr - Expr

idExpr - Expr

id id

Expr

Expr-Expr

id Expr-Expr

idid
(a) (b)

Figure 4.3: Two parse trees for id - id - id.

Exercises 16 and 17 consider how to detect both forms of useless nontermi-
nals. Many parser generators verify that a grammar is in reduced form. An
unreduced grammar probably contains errors that result from mistyping of
grammar specifications.

4.2.2 Ambiguity

Some grammars allow a derived string to have two or more different parse
trees (and thus a nonunique structure). Consider the following grammar,
which generates expressions using the infix operator for subtraction.

1 Expr→ Expr - Expr
2 | id

This grammar allows two different parse trees for id - id - id, as illustrated in
Figure 4.3. The tree in Figure 4.3(a) models the subraction of the third id from
the difference of the first two. The tree in Figure 4.3(b) subtracts the difference
of the last two id symbols from the first. If the id symbols have values 3, 2, and
1, then tree Figure 4.3(a) evaluates to 0, while tree Figure 4.3(b) evaluates to 2.

Grammars that allow different parse trees for the same terminal string are
called ambiguous. They are rarely used because a unique structure (i.e., parse
tree) cannot be guaranteed for all inputs. Hence, a unique translation, guided
by the parse tree structure, may not be obtained.

It seems we need an algorithm that checks an arbitrary CFG for ambiguity.
Unfortunately, no algorithm is possible for this in the general case, as the prob-
lem is undecidable [HU79, Mar03]. For certain grammar classes, successful

Figure 4.3.: An ambiguous grammar allowing for multiple parse trees. Example taken
from Crafting a Compiler [16, p. 121].

This example shows an ambiguous grammar that allows for multiple different parse trees
to be derived from the same input string. A simple example of this would be the string
id − id − id. As is shown in Figure 4.4, the compiler with the above shown grammar,
would have multiple ways of reaching the desired outcome.4.2. Properties of CFGs 121
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Figure 4.3: Two parse trees for id - id - id.

Exercises 16 and 17 consider how to detect both forms of useless nontermi-
nals. Many parser generators verify that a grammar is in reduced form. An
unreduced grammar probably contains errors that result from mistyping of
grammar specifications.

4.2.2 Ambiguity

Some grammars allow a derived string to have two or more different parse
trees (and thus a nonunique structure). Consider the following grammar,
which generates expressions using the infix operator for subtraction.

1 Expr→ Expr - Expr
2 | id

This grammar allows two different parse trees for id - id - id, as illustrated in
Figure 4.3. The tree in Figure 4.3(a) models the subraction of the third id from
the difference of the first two. The tree in Figure 4.3(b) subtracts the difference
of the last two id symbols from the first. If the id symbols have values 3, 2, and
1, then tree Figure 4.3(a) evaluates to 0, while tree Figure 4.3(b) evaluates to 2.

Grammars that allow different parse trees for the same terminal string are
called ambiguous. They are rarely used because a unique structure (i.e., parse
tree) cannot be guaranteed for all inputs. Hence, a unique translation, guided
by the parse tree structure, may not be obtained.

It seems we need an algorithm that checks an arbitrary CFG for ambiguity.
Unfortunately, no algorithm is possible for this in the general case, as the prob-
lem is undecidable [HU79, Mar03]. For certain grammar classes, successful

Figure 4.4.: Two different parse tree created from the same ambiguous grammar. Exam-
ple taken from Crafting [16, p. 121].

Checking a CFG for ambiguity can be difficult, as there is no algorithm that can prove
its unambiguity, for all CFG’s. There are many tools that can check for ambiguity in
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specific grammars, some of which were used in this project. These will be explained
further in section 4.5. For this project, it was decided to make an LL(1) grammar, which
cannot be ambiguous. Testing whether the grammar was LL(1) or not was done through
the use of the tools COCO/R and PEG.js.

4.4.2. LR(1) Parser

An LR(1) parser employ the same base tactic of employing a simple set of methods that
the parser continuously calls from. These actions help reduce expressions and facilitate
the transfer of partial strings from two stacks. One approach to visualise the theory is to
represent the process as two needles — the left needle which holds the processed part of
the input string, and the right needle that has the unprocessed part of the string. The
two commands employed in LR(1) parsers are:

• Shift: A method that transfers the next token from the right needle to the left,
and records the state. [16, p. 182]

• Reduce: Replaces a token on the left needle with its corresponding left-hand-side
symbol from the CFG. Formalised the reduction follows the rule A → γ. γ is a
token that need to be converted to their corresponding left-hand-side symbol. A
is the representation of the left-hand-side symbol. [16, p. 182]

4.4.3. LL(1) Parser

LL(1) parsers are a subset of LR(1) parsers, that restrict CFGs to make parsing easier.
An LL(1) parser predicts the appropriate production for a non-terminal, by peeking at
the k next terminal symbols (tokens) in the input stream. This is done via use of two
commands:

• Predict: A method that predicts which production to apply for a given set of
tokens, by utilising k lookahead. Formalised, the function reads as Predictk(p). k
is the length of a set of token strings used to predict the string that comprises p.
p is a grammar production expressed as a rule. It considers the production p and
computes a set of strings with a length of exactly k, that will be used to predict
the application of rule p. [16, p. 146]

• Match: A method that checks a stream of tokens for a specific token. Formalised,
it is written as match(ts,token), where ts is a stream of tokens, and token is the
specific token we wish to check the stream against. match() peeks k tokens ahead,
and if it finds a token corresponding to the specified token, it advances to the next
token. [16, p. 149-150]
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4.4.4. Comparing Parsing Techniques

Comparing LL(1) and LR(1) parsers can be difficult, as they both have strengths that
are dependent on the context they are employed in. With regards to generality, it can be
argued that LR(1) parsers are more powerful than LL(1) parsers, due to LR grammars
being able to recognise a wider spectrum of grammars. This makes it more convenient
because of the need to rewrite grammars occurring less frequently. Additionally, LR(k)
has the added advantage of being able to handle left recursion.

On the other hand, when considering the ability to deal with error handling LL parsers
shine. LL parsers make it easy to locate errors and recover from them. This is due to
the way that every token is looked at in a meticulous and solitary fashion. Additionally,
many programmers find it easy to create a LL(1) parser, or a parser with one token
lookahead, by hand because of the restrictive nature of LL(1) grammars. [16, p. 171]
However, one of the disadvantages of LL(1) parsers is that they have trouble handling
left-recursion. Because the parser always picks the leftmost nonterminal, it will continue
to evaluate the same nonterminal for perpetuity.

With regards to complexity, it is preferable to use an LL(1) parser. Recall the needles
mentioned in section 4.4.2, and how tokens are thrown between stacks, to reverse pro-
ductions to left-hand-side symbols to knit. This roundabout way of creating parse trees,
by collecting them in chunks, where children nodes are knitted together, generally makes
it harder to write in hand.

4.5. Parser Generating Tools

As mentioned in Appendix B there are multiple types of parsers, and correspondingly,
there are many ways of creating a parser. Creating a parser by hand is a time-consuming
process, and as such there are many tools that analyse and create parsers automatically.
For Rios, multiple different tools were considered, all of which had pros and cons.

4.5.1. ANTLR

ANTLR is a free parsing generator used for creating LL(*) parsers. While both the
tool and its documentation are free, the people behind ANTLR have created a book
that shows how to utilise the parsing tool to its fullest. ANTLR is capable of creating
three different types of recognisers: lexers, parsers and tree parsers. Creating a parser
via ANTLR only requires that users provide a CFG of a given language. Said CFG is
then used to create a lexer and parser, which in turn can be used to create a concrete
syntax tree. [17] Older versions of ANTLR used to support the creation of abstract syntax
trees (AST), but as of ANTLR4, creating an AST requires use of a listener or visitor
pattern [18].
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4.5.2. COCO/R

COCO/R is a tool meant for compiler generation. It takes a grammar for a given source
language, whose productions are in extended backus-naur form and uses it to make a
scanner and a parser. The produced scanner will work as a deterministic finite automaton,
that can be configured to either account for case sensitivity or not. Parser construction
will by default be LL(1) parser, but can also accept LL(K) since LL(1) conflicts can be
resolved by using further lookahead. [19, p. 3-9]

4.5.3. Manual

A third option is to write a parser by hand. There are pros and cons associated with
this, and they depend on the context and grammar being used.

One big advantage of writing a parser in hand is that it forces programmers to get an
in-depth understand of the parsing tool being made. Because parsers are reliant on the
employed CFG, it forces programmers to account for even the smallest changes in the
grammar.

This in turn is also one of the disadvantages of writing a parser in hand. Creating
a language is often an iterative process, which changes multiple times before the final
language is created. Accordingly, this process often requires changes to the CFG, that
the parser relies on. Due to this, a parser will likely have to be changed multiple times
throughout a long-lasting projects.

For Rios the parser was made without the use of any automatic parser generating tools.
This was due to there being some problems associated with both ANTLR and COCO/R.
First, ANTLR would requires use of a form of dynamic LL CFG that would require
the CFG to be changed. Secondly, COCO/R handles LL(1) conflicts by performing
grammar transformations, that often reduce readability by changing various productions.
This could be anything from changing enumerations to actual numbers, or reducing
grammatical symbols to condensed pipe operator commands [19, p. 17-20].

4.6. The Rios Transformer

To make subsequent work with the parsing tree easier to handle, in the way of making
the tree more uniform, a number of transformations are made on the tree. This is done
by the transformer through a number of smaller tasks.

First, as mentioned in section 4.1.1, the transformer adds a global state around the
programs entirety, to make code generation easier. Second, the transformer visits the
various reactions and makes them uniform in their tree representation.
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1 when A >=

2 | 5 : //Do stuff

3 | 7 : //Do other stuff

4
5 when (B == 5) : //Do stuff

6
7 always : //Do stuff

Figure 4.5.: Example reactions in Rios syntax

fig. 4.5 shows some example reactions in Rios. All are valid syntactically, but all of
them could instead be expressed in the same form. The transformer takes care of this,
changing the parser tree representations of the reactions to be uniform for ease of use in
later stages.

1 when

2 | A >= 5 : //Do stuff

3 | A >= 7 : //Do other stuff

4
5 when | B == 5 : //Do stuff

6
7 when | true : //Do stuff

Figure 4.6.: Example reactions in Rios syntax

fig. 4.6 shows the transformed reactions, that are all still syntactically valid, in addition
to being formatted in the same manner. The changes made simplify the reactions, both
for semantic definition and for codegeneration. For example, the comparison operators
have been moved into tokens. The shorthand version of the when reaction has been
changed to resemble the longform version more. The always has been changed to a
’when’ syntax that will simply always run.

4.7. Making a Symbol Table

Traditionally, a symbol table is a mechanism that allows the compiler to associate infor-
mation with identifiers, and store them to be used across different modules. Every time
a given identifier is declared and used, the accumulated information stored within the
symbol table, will then be provided - regardless of where in which module is accessing it.
Symbol table construction is done via a semantic-processing activity that traverses the
AST to record every identifier and types found within the source program. [16, p. 18][16,
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p. 48] Collection of preliminary information is traditionally done by a lexer module, but
can also be delegated to other modules, as is the case with the Rios parser. The way Rios
handles collection of information via multiple modules built around visitor patterns.

4.7.1. Utilising Visitor Patterns

Multiple phases of the Rios compiler modules utilise an implementation of a visitor
design pattern. Visitor patterns are found within the transformer, symbol registrar,
symbol checker and type checker modules. While implementation differs per module, the
reasoning behind use remains the same. When using a compiler that represents programs
as abstract syntax trees, like Rios does, it will need to perform operations on the various
nodes of the AST. The compiler will have to employ different classes for the different
node types. Assignment statements, arithmetic, or all require different node treatment,
which is where visitor patterns prove useful. Visitor patterns pack all these operations
into one object, allowing new operations to be added separately and making node classes
independent of the operations that apply to them. The visitor pattern can then pass
relevant operations to each node of the AST as it traverses the tree. This method allows
for a system that is easier to understand, maintain and change, albeit operating a bit
slower than traditional implementation. [20]

The transformer uses the visitor pattern to make transformations to the AST. Primarily,
this concerns adding a global state to wrap the program in. Secondarily it transforms
reactions in a few ways: condition preambles and case conditions are combined, while
shorthand whens are extended into long forms. The symbol registrar uses the visitor
pattern to register variables in the various scopes to the symbol table. The symbol
checker uses the visitor pattern to ascertain that expressions using variables are using
variables that already been declared. Finally, the type checker uses the visitor pattern
to ascertain that expressions use valid types.

4.8. Reaction Sorting

As previously mentioned, Rios evaluates the most independent Reactions before depen-
dant reactions. This is done with the use of Tarjan’s strongly connected components
algorithm [21]. The dependencies of reactions can be illustrated as a directed graph,
such that reactions are vertices, and the dependencies are edges. Formally, given a di-
rected graph G = (V,E), an edge (v, w) ∈ E means that reaction v ∈ V writes to a
variable which reaction w ∈ V reads, meaning w is dependant on v. The use of Tarjan’s
strongly connected components algorithm results in a reverse topological sort of the re-
actions given, this is then converted into a topological sort. Allowing the reactions to be
sorted by dependencies, with the most independent reaction at the head. In addition to
this feature, the algorithm also detect cycles in the reaction dependencies, which would
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otherwise defer from the given semantics of, changing a variable in multiple Reactions in
a single state is not permitted. [21]

4.9. Code Generator

This section will go through the code generation module of the Rios compiler. It will
explain how each state, reaction, and transition is handled at compile-time, in addition to
how the individual code segments are transformed during compilation. This section will
also explain each of these individually, as each concept can be translated independently
of each of the other concepts. For example, how a reaction is translated has no impact
on how a state is translated.

The code generator works by taking a Rios program and translating it to a Arduino
Language program. This is done to make sure that Rios will be able to compile to any
kind of Arduino unit, as this was one of the requirements for the language. This also
makes it easier to implement a lot of the wanted features such as pins and serials, since
it can translate the pins in Rios to pinmodes in Arduino Language. Similarly, it can
translate Rios serials to Arduino Language serial connection declarations.

The code generation module of Rios works sequentially through various phases when it
compiles a program. First, the prepareFile and endFile functions traverse through
code supplied from previous modules. prepareFile creates function headers needed for
the compilation of the program and, with regards to states, tries to find the lowest-level
default child and all OnEnter calls in it and its parents. endFile works in continuation
of prepareFile by supplying closing statements to the various processes created by
prepareFile.

When the various groupings have been filled, the actual compilation process can begin.
As Rios compiles down to Arduino Language, many of the custom constructs only found
within Rios are converted into something very syntactically different, while remaining
semantically equivalent.

4.9.1. Reactions

Rios handles reactions by converting them into if statements and Arduino Language
functions. Each of the different Rios reactions, when, every, and always gets converted
to if statements, while cases inside of the reactions are converted to functions that can
be run when the condition is fulfilled

Listing 4.1: An example of a reaction in Rios.
1 //reaction:

2 |case condition : case statement//
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Listing 4.2: An example of a converted reaction in Arduino Language
1 //if (condition){

2 function call();

3 }

4 function name(){

5 case statement;

6 }//

Listing 4.1 and Listing 4.2 shows how the code generator converts Rios code into Arduino
Language code that the Arduino

4.9.2. States

The way Rios handles states is by converting them to switch cases that can be used
within the Arduino Language. Every case within the switch statement corresponds to a
state, that will be run when the currentState variable holds the value of the given case.

1 default state StateOne {

2 // reaction //

3 // reaction //

4 }

5
6 state StateTwo {

7 // reaction //

8 // reaction //

9 }

Listing 4.3: "A very simple example of states created within Rios."

1 enum states {

2 NoState = -1,

3 StateOne,

4 StateTwo

5 };

6
7 states _currentState = NoState;

8 states _nextState = StateRising;

9
10 void loop() {

11 switch(_currentState) {

12 case StateOne:

13 // Function //

14 // Function //

15 break;
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16 case StateTwo:

17 // Function //

18 // Function //

19 break;

20 }

21
22 if(_nextState != NoState) {

23 _currentState = _nextState;

24 _nextState = NoState;

25 (*_tFunc)();

26 }

27 }

Listing 4.4: The Arduino Language equivalent of Listing 4.3.

The code shown in Listings 4.3 and 4.4 shows the conversion of states to a switch state-
ment. State names are collected and inserted into an enum, and the contents of the
enum are then used as the basis for the cases present in the switch statement used in
Arduino. During compilation, Rios creates a point from which to begin, named NoState

that contains no behavior. This is used as the starting point for the currentState,
which the program then uses to springboard into the whichever states are prioritised at
compile-time. The ordering of the cases found within the switch statement is based in
the ordering of the states in the original Rios program, so that the state that is defined
first in the Rios example will always correspond to the first case in the Arduino Language
switch statement. The reactions within each case in the switch is placed in specific order,
according to the reaction sorting as explained in section 4.8.

4.9.3. Transitions

Transitions between states in Rios is handled by transitions which corresponds to function
pointers in C++.

1 void (*_tFunc)() = &_tFuncStartup;

2 // Other declarations, priority, setup, reaction loop.

3 void _tFuncStartup() {

4 StateGlobalOnenter();

5 StateOneOnenter();

6 }

To begin, the function points to a default function that runs the OnEnter functions
needed to transition to the default state that the program enters. When the program
begins, it skips the first run of the switch statement described in section 4.9.2, and
encounters the transition check in the end.
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The transition check executes a check on the value of nextState. If the value is not
NoState, the transition is triggered. If the value is NoState, nothing is done. After this,
the Arduino standard loop function restarts.

1 if(_nextState != NoState) {

2 _currentState = _nextState;

3 _nextState = NoState;

4 (*_tFunc)();

5 }

In any given reaction, a transition may be triggered by setting nextState to any given
state. When this is done, tFunc is also changed to a corresponding transition function.

1 if(_nextState == NoState || 0 > _priorities[_currentState][_nextState]) {

2 _nextState = StateOne;

3 _tFunc = &transitionGlobal2One;

4 // Other code

5 if(_nextState == NoState || 1 > _priorities[_currentState][_nextState]) {

6 _nextState = StateTwo;

7 _tFunc = &transitionGlobal2Two;

The transitions functions may in turn call a number of OnEnter functions. In this
example, each only calls a single function.

1 void transitionGlobal2One() {

2 StateRisingOnenter();

3 }

4 void transitionGlobal2Two() {

5 StateFallingOnenter();

6 }

As has been commented on throughout the project there can, in some cases, exist two
transitions to different states at the same time. The way the code generator handles
this is via the generatePriorities and visitTransitionStmtNode. These functions
create an array of states ∗ states size, where the array indexation matches the enum list
mentioned in section 4.9.2. The first element in the enum would be NoState which would
correspond to -1, with every following element corresponding to a value 1 higher than
its predecessor. As an example, the corresponding mapping to a priority array with two
states, would look like what is showcased in Listing 4.5 below.

1 int _priorities[3][3] = {

2 {-1,0,1,},

3 {-1,0,1,},

4 {-1,0,1,},

5 };
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Listing 4.5: Example priority array

These priorities are used when deciding whether or not to execute a state transition.
First, the program checks whether the next state has been changed before. If it has, the
priority of the new nextState is compared to the current nextState, with the state of
higher priority being kept. Of note, is that a small compiler optimization is made at this
point. As the conditions for a transition, and the priority for that transition is always
known, a new nextState can be compared to a static value.

1 if(/*Condition*/) {

2 if(_nextState == NoState || 0 > _priorities[1][_nextState]) {

3 _nextState = StateRising;

4 _tFunc = &transitionGlobal2Rising;

5 }

6 }

7 else if(/*Other condition*/) {

8 if(_nextState == NoState || 1 > _priorities[1][_nextState]) {

9 _nextState = StateFalling;

10 _tFunc = &transitionGlobal2Falling;

11 }

12 }

Listing 4.6: Example priority check

4.10. Summary of Chapter 4

Found within this chapter was a thorough examination of compiler structure, and how
relevant theory was applied to the Rios Compiler. Additionally, this chapter also gave
readers and comprehensive understanding of why every module found within the Rios
compiler, was designed to work as it does, and why the way of constructing it as such
was utilising.

Readers should, after reading this chapter, have a firm understanding of how a compiler
is structured; from when a source program is submitted to the compiler, until a new
program comes out in a format fitting the target system. In addition to this, readers
should understand that certain modules in the Rios compiler deviate from the norm
described within section 4.1 due to the platform, and how the program structure is
divided.
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5. Evaluation

The goal of Rios was to create a language for micro-controllers which specialises in solving
I/O-based problems. In order to guide the design of this, a number of requirements were
presented. To find out whether we succeeded in creating such a language, it is necessary
to test whether or not Rios is currently capable of using specialised I/O concepts to solve
I/O problems, and how well it does this. Firstly, a practical test will be conducted, solely
focusing on whether or not Rios is able to solve I/O problems. In the case that we are
able to, an evaluation should be done analysing how well it does. For this purpose we
re-use the language evaluation criteria with respect to I/O problems from section 2.3.

5.1. Practical Test

In section 2.2 the I/O automaton was presented, which included a number of concepts
that, if used correctly, could solve I/O problems. These concepts were states, default
states, actions and transitions, and served as the core mechanism to solve I/O-based
problems. We now show that all these concepts are easily implemented using Rios.

1 state StateName {

2 // Code here

3 }

Figure 5.1.: Implementation of a state in Rios

1 default state StateName {

2 // Code here

3 }

Figure 5.2.: Implementation of a start state in Rios
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1 default state StateName {

2 when x == 5 : // Code here

3 }

Figure 5.3.: Implementation of a reaction in Rios

1 default state StateName {

2 when x == 5 : enter(StateName2)

3 }

4
5 state StateName2 {

6 // Declarations here

7 }

Figure 5.4.: Implementation of a transition in Rios

Given that each of the aforementioned concepts is implementable in Rios, it should be
possible to simulate the behaviour of an I/O automaton, for any given I/O problem. We
originally presented a smoke detector problem in section 2.2, the problem was solved using
the Arduino language, the exact code to that solution being available in Appendix A.
We now show that the same problem is solvable using Rios.
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1 // Measure a value and change the behaviour when the measured value

↪→ exceeds a given threshold. If the threshold is exceeded, a red LED

↪→ should light up and a tone should play from a buzzer, otherwise a

↪→ green LED should be lit and the buzzer should be silent.

2 dpin red = d@12

3 dpin green = d@11

4 apin buzzer = a@10

5 apin smoke = a@A5

6 serial sout = $usb 9600

7 int treshold = 400

8
9 always : [

10 sout.println("Pin A0: ");

11 sout.println(smoke.read());

12 ]

13
14 priority Alarm, Standby

15
16 default state Standby {

17 when smoke.read() > treshold : transition(Alarm)

18 onenter : [

19 red.write(low);

20 green.write(high);

21 buzzer.write(0);

22 ]

23 }

24
25 state Alarm {

26 when smoke.read() < treshold : transition(Standby)

27 onenter : [

28 red.write(high);

29 green.write(low);

30 buzzer.write(100);

31 ]

32 }

Figure 5.5.: An Rios implementation of the smoke-detector problem. (Arduino Language
version shown in Appendix A)
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5.2. Language Evaluation Criteria

The language evaluation criteria presented in section 2.3 were used to determine how
well, the Arduino language and C++ were specialised for I/O based problems. After the
creation of Rios, a language which goal was to be specialised for solving I/O problems,
we apply the same evaluation criteria.

Simplicity: Given that Rios can implement all the relevant I/O specialised concepts in
a simple and intuitive manner (see figures 5.1, 5.2, 5.3 and 5.4), the language naturally
becomes simple to work with.

Orthogonality: Rios adds orthogonality mainly by targeting the communication source
between the micro controller and the outside world. Comparable to the Arduino lan-
guage’s approach in having the pins locations declared as integers, and using these lo-
cations as parameters to various functions, Rios simply introduces new primitive data
types for pins, such as apin and dpin. Furthermore, it is possible to construct complex
data types such as sub states, by the utilisation of states.

Data type: Rios introduces a number of data types useful for solving I/O based problems,
the most prominent ones being apin, dpin, and serial. These were added in order to
support the necessary communication between the micro controller and its surroundings.

Syntax design: Keywords in Rios are designed as to hopefully let a given programmer
gauge the semantic meaning of a keyword simply by reading it. For example, "when"
and "always" are both keywords in Rios. However, "when" heavily implies a dependency,
contrary to "always" which signals independence. Finally, adding multiple keywords to
a variable should still let the programmer identify the properties of the variable. For
instance, a normal state declaration is simply the word "state" followed by the state
name. However, adding "default" before the "state" keyword, explicitly tells the user
the state will be the initial state.

Abstraction: Rios allows for both process abstraction, through sub states and reactions,
and data abstraction through states.

Expressively: Rios does have a level of expressively mainly in reactions, but also in
operation calls. In order to simplify reading/writing reactions, it is possible to group
multiple reactions using the same variables in their conditions. For example, rather than
having,

1 when x == 5 : enter(State1)

2 when x == 3 : enter(State2)

Figure 5.6.: Two reactions dependent on the same variable written separately in Rios

The same can be achieved with,
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1 when x ==

2 | 5: enter(State1)

3 | 3: enter(State2)

Figure 5.7.: Two reactions dependant on the same variable grouped in Rios

In 5.7 we group cases dependant on the same variable, allowing for better readability
and writeability.

Type checking: With regards to type checking, this module handles it by checking
whether a variable declaration matches its inferred type. This means that the type
checker evaluates whether the values on both sides of equals signs match. This is done
because of the lack of type coercion within Rios. Variables of the type int can therefore
only be used with other int variables, and not double or float type variables. This same
rule applies to the bytes and long types.

Exception handling: There is no availability for exception handling in the Rios language,
since the language will run on microcontroller and there is no overhead on the device to
support this feature.

Aliasing: The Rios language does not support aliasing. This is because there is no
method to accessing the same piece of memory using two or more variable, since there is
no support for pointer or similar methods.

5.3. Discussion

Rios was designed to specifically solve I/O based problems using I/O automata. This
property was explored in section 5.1, where it was indicated that the usage of specialised
I/O concepts in Rios, made it possible to solve I/O problems using I/O automata. It
should however be noted, that while Rios was able to solve a simple I/O problem, it does
not necessarily mean all I/O problems can be solved. However, given the illustration that
Rios can easily implement all the specialised I/O concepts an I/O automaton requires, it
is reasonable to presume that any problem which can be solved with an I/O automaton,
can also be solved using Rios. For this reason, the first functional requirement has been
satisfied. Similarly, given the simplicity and explicit in which the concepts of the I/O
automaton are implemented, the first non-functional requirement has also been fulfilled.
Furthermore, due to the nature of the compiler described in chapter 4, it is possible to
compile Rios code to Arduino Language and therefore upload it to an Arduino micro-
controller, meaning the second functional requirement is also complete.
In addition to this, given that Rios supports operations for both arithmetic and logical
data types, the third functional requirement is also satisfied. Finally, because the design
of Rios was guided by the need to solve I/O problems, more so than the need to run on
a specific Arduino micro-controller, the resulting choices are transferable and servable
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for any language which wishes to specialise in solving I/O based problems. Therefore,
the third non-functional requirement is fulfilled. Lastly, due to the choice of utilising a
recursive decent parser, it was possible to satisfy the final functional requirement, due to
its property of being able to give the user detailed feedback on compilation error.

5.4. Conclusion

The purpose of this project was to create a specialised language for Arduino micro-
controllers. The approach for this was to anchor the entire project around a problem
statement:

Given that I/O automata are a common possible solution for I/O prob-
lems solved with Arduino microcontrollers, how can a language be de-
signed which is based in the relevant aspects of the automata, and spe-
cialised for microcontrollers/Arduino?

In order to accommodate this Rios was created, as an attempt to create a language
that could handle I/O-based problems via I/O automata. Given that Rios was based
in a specific problem solution to a limited problem domain, it naturally inherits the
properties to solve said problems, as demonstrated in 5.5, and a further example can
be seen in Appendix E. In order to evaluate the capacity with which it solves problems
within the domain, certain criteria were applied in section 5.2 indicating that Rios is
indeed specialised for I/O problems. Based on this, as well as the inherited properties
of the I/O automata highlighted in earlier chapters, Rios was conclusively deemed an
I/O-specialised language.

While Rios is a fully functioning language, it cannot be deemed complete. While Rios
can compile many programs, certain functionalities are still to be desired. This could, for
example, be the addition of statement control structures or proper testing suites. These
ideas will be further explored in section 5.5.

In addition to the current implementation of Rios, the design choices applied to the
language should in no way inhibit the possibility of the addition of other features. As
the v1.0 implementation in no way interferes with any C++ constructions, Rios could
in theory be possible to convert the language to be an extension to C++ rather than a
separate language.

5.5. Future Work

While the creation of Rios was a thorough and meticulous process, it was still subject
to severe time constraints due to being a student project. Because of this, some features
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had to be implemented in a limited fashion, while others had to be cut entirely.

This section will explain some possibilities for further development should this project
ever see an influx in time and resources for such a course.

5.5.1. Extensive Testing Suites

The amount of testing done to secure correct implementation in Rios was less than
sufficient. On launch of version 1.0, the amount of tests included was limited to JUnit5
unit-tests that verified whether the output of individual strings was as intended. Because
v1.0 only tests the individual lines, there is no assurance that entire modules would work
according to the collective semantic meaning. Because of this, Rios would benefit greatly
from implementing extensive testing suites to deal with integration tests.

Additionally, v1.0 only represents the uses intended by the creators of Rios. All testing
was done in an isolated environment, where intended uses were known, and semantic
meaning was implicitly understood by users. Because of this, it would be beneficial to
commit resources in a future version to do some semblance of implementation testing.
Testing the language on users not familiar with it would potentially help find mistakes
or semantic inconsistencies not considered during v1.0 development.

Translation Validation

There are many ways of making sure that a compiler works as intended. It is, however,
still not possible to automatically prove that a compiler always produces the desired
result, that is equivalent to the source program [22]. This is because of the fact that
a near-infinite amount of programs that can be compiled. There are however ways of
making sure that each compilation achieves the desired result. One such way is transla-
tion validation. The idea behind translation validation is to check the compiled program
against the source program, and pinpoint potential differences. Translation validation
serves as a tool to help raise effectiveness and automate the testing process. While it does
not remove the need for other testing suites, where the actual testing takes place, it does
remove the explicit need of looking through the compiled results, to pinpoint errors. It
does this by analysing the program steps via a two-step inference algorithm that utilises
control-flow graphs, as well as a symbolic evaluation.[22]

As was explained, in section 5.5.1 the amount of tests found within Rios was somewhat
basic. If given more time, it would prove very beneficial to improve further upon the
increased amount of test suites, by adding verification to the various suites being used
to ensure correct compilation. Translation validation, while still a prototype, could be
one potential candidate that Rios would benefit greatly from implementing.
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5.5.2. User-functions

One of the things that were originally planned for the Rios was to include user-defined
methods. While users can use implemented syntax like whens to manipulate data, there
is no way for a user to properly create a custom method to use within a program. While
v1.0 of Rios can handle I/O problems, the language cannot truly be considered ’done’
without this feature. This means that if a user has to employ the same method twice,
that user will have to write that method within the program twice, as there is no way to
call the same method multiple times.

5.5.3. Control Structures

Another limitation of the v1.0 of Rios was the lack of control structures in the traditional
sense. While it supports the use of whens it lacks any and all support of if-else

statements, as well as while and for loops in statements. While v1.0 can be said to
work, the lack of statement control structures, limits the range of actions a programmer
can commit to when creating a program.

5.5.4. Type Coercion

The v1.0 of Rios has no type coercion, as is also reflected in the type rules in Appendix D.
However, as there are several types that can be used for integers, one might expect that
these could be used together. For example, adding a byte value onto a variable of type
long should internally convert the byte to a long and add them together. Similarly, as
pin readings can only return ints and bools, a programmer wanting holding variables for
the pin values is forced to use variables of those types. Allowing simple type coercion
would fix many of these problems, while also being relatively simple to implement.
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A. Smoke/Gas Detector Code

1 /*******
2
3 All the resources for this project:

4 https://www.hackster.io/Aritro

5
6 *******/

7
8 int redLed = 12;

9 int greenLed = 11;

10 int buzzer = 10;

11 int smokeA0 = A5;

12 // Your threshold value

13 int sensorThres = 400;

14
15 void setup() {

16 pinMode(redLed, OUTPUT);

17 pinMode(greenLed, OUTPUT);

18 pinMode(buzzer, OUTPUT);

19 pinMode(smokeA0, INPUT);

20 Serial.begin(9600);

21 }

22
23 void loop() {

24 int analogSensor = analogRead(smokeA0);

25
26 Serial.print("Pin A0: ");

27 Serial.println(analogSensor);

28 // Checks if it has reached the threshold value

29 if (analogSensor > sensorThres)

30 {

31 digitalWrite(redLed, HIGH);

32 digitalWrite(greenLed, LOW);

33 tone(buzzer, 1000, 200);

34 }

35 else

36 {
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37 digitalWrite(redLed, LOW);

38 digitalWrite(greenLed, HIGH);

39 noTone(buzzer);

40 }

41 delay(100);

42 }
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B. Context Free Grammar

S ::= Decs EOF

Decs ::= {Dec}
Dec ::= V arDec

| ReactDec
| StateDec
| OnEnter
| PriorityList

StateDec ::= [default] state StateId { Decs }

V arDec ::= Type Id Assign Expr

ReactDec ::= When

| Always
| Every

PriorityList ::= priority StateId {, StateId}
Every ::= every IntLiteral Unit (Result | When)

Always ::= always Result

OnEnter ::= onenter Result

When ::= when ExprNum (Result | [(CompOp|BoolOp)] Cases)
Cases ::= Case {Case}
Case ::= | [(CompOp|BoolOp)] Expr Result

Result ::= : Stmts
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Expr ::= ExprBool

ExprBool ::= ExprComp [BoolOp ExprBool]

ExprComp ::= ExprNum [CompOp ExprComp]

ExprNum ::= ExprProduct [NumOp1 ExprNum]

ExprProduct ::= ExprNegate [NumOp2 ExprProduct]

ExprNegate ::= [!] ExprCall

ExprCall ::= ExprSingle [[. Calls] ( [Expr {, Expr}] )]

ExprSingle ::= Literal

| Id
| ( Expr )

Literal ::= IntLiteral

| ByteLiteral
| LongLiteral
| FloatLiteral
| PinLiteral
| SerialLiteral
| StringLiteral
| BoolLiteral

Stmts ::= [ Stmt {; [Stmt]} ]
| Stmt

Stmt ::= V arDec

| TransitionStmt
| Expr [{, Expr} (CompAssign|Assign) Expr]

TransitionStmt ::= transition ( StateId )

Calls ::= read

| toggle
| write
| println
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BoolLiteral ::= true | false | high | low
PinLiteral ::= (a | analog | d | digital) @ [A] IntLiteral [pullup]

SerialLiteral ::= $ (usb | pin) IntLiteral

StringLiteral ::= " {notQuote} "
IntLiteral ::= digit {digit}

LongLiteral ::= digit {digit} L
ByteLiteral ::= digit {digit} B
FloatLiteral ::= digit {digit} . [digit {digit}]

CompOp ::= == | != | <= | >= | < | >
BoolOp ::= && | ||

NumOp1 ::= + | -
NumOp2 ::= * | /
Assign ::= =

CompAssign ::= (NumOp1|NumOp2) Assign

Id ::= smallLetter {anyFollowing}
StateId ::= bigLetter {anyFollowing}

Unit ::= d | h | m | s | ds | cs | ms
Type ::= apin | dpin | serial | int | bool | byte | float | long

notQuote ::= ANY − " − eol
digit ::= 0 . 9

eol ::= \n

smallLetter ::= a . z

bigLetter ::= A . Z

anyFollowing ::= a . z + A . Z
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C. Structural operational semantics

Abstract syntax categories:

n ∈ Num Numerals
x ∈ NameV Variable Names
s ∈ NameS State Names
Dp ∈ DecP Priority List Declarations
Do ∈ DecO OnEnter Declarations
Dv ∈ DecV Variable Declarations
Ds ∈ DecS State Declarations
Dr ∈ DecR Reaction Declarations
Dc ∈ DecC Reaction Case Declarations
S ∈ Stmt Statements
e ∈ Expr Expressions
u ∈ Unit Time units
T ∈ Type Types
p ∈ Prog Program

e ::= n | x | ( e ) | e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2

| e1 == e2 | e1 != e2 | e1 < e2 | e1 > e2 | e1 <= e2 | e1 >= e2

| !e | e1 || e2 | e1 && e2

Dp ::= s, Dp | s | ε
Do ::= onenter: S | ε
Dv ::= t x = e Dv | ε
Ds ::= state s { Dp Do Dv Dr Ds } Ds | ε
Dr ::= when c | ε
Dc ::= | e : S c | ε
T ::= apin | dpin | serial | int | long | bool | byte | float

S ::= S1 ; S2 | x = e | Dv | transition( s1 ) | e | ε
p ::= Ds
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C.1. Meta-sets

v ∈ Val = Q ∪ Strings ∪ {true, false}(C.1)

r ∈ Rea = (DecC ×Var×Pri)(C.2)

r∗ ∈ Rea∗(C.3)

nexts ∈ NameS × {ε}(C.4)

currs ∈ NameS(C.5)

l ∈ Loc(C.6)

NameSE = NameS ∪ {ε}(C.7)

C.2. Helping Functions

N : Num→ Q(C.8)

pri ∈ Pri : (NameS ∪ {next}) ⇀ N(C.9)

var ∈ Var : NameV ⇀ Loc(C.10)

sto ∈ Sto : Loc⇀ Val(C.11)

sta ∈ Sta : NameS ⇀ Rea∗︸ ︷︷ ︸
Reactions

× Stmt︸ ︷︷ ︸
OnEnter

×NameSE︸ ︷︷ ︸
Parent

× NameSE︸ ︷︷ ︸
DefaultChild

(C.12)

anc(s) = {s} ∪ anc(pares) where (pares, ...) = sta(s)(C.13)

rel ∈ Rel : (Rea× {reader , writer}) ⇀ Loc∗(C.14)

nextsto(l) = l + 1(C.15)
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C.3. Transition Systems

declaration transitions system =

−→Dp= (DecP ×Pri)︸ ︷︷ ︸
ΓDp

× (Pri)︸ ︷︷ ︸
TDp

var, rel , pri , pares ` 〈DecP, sto, sta〉 −→Dp 〈sto, sta〉
−→Do= (DecO × Sta)× (Sta)

s ` 〈DecO, sta〉 −→Do 〈sta〉
−→Dv= (DecV ×Var× Sto)× (Var× Sto)

〈Stmt, pri〉 −→Dv 〈pri〉
−→Dr= (DecR × Sta×Rel)× (Sta×Rel)

var, sto, pri , s ` 〈DecR, sta, rel〉 −→Dr 〈sta, rel〉
−→Ds= (DecS × Sto× Sta)× (Sto× Sta)

〈sto, sta〉 −→Ds 〈sto, sta〉
−→rel= (Stmt×Var×Rel)× (Var×Rel)

〈var, rel〉 −→rel 〈var, rel〉

global transitions system = (Γg, =⇒g)

Γg = DecS ∪ (Rea∗ × Sto×NameS︸ ︷︷ ︸
currs

×NameSE︸ ︷︷ ︸
nexts

)

=⇒g= Γg × Γg

transition transition system = (Γt, Tt, −→t)

Γt = NameS × Sto×NameSE

Tt = Sto×NameSE

−→t= Γt × Tt
currs,nexts ` 〈s, var, sto,nexts〉 −→t 〈var, sto,nexts〉

local transition system = (Γl, Tl, −→l)

Γl = Stmt×Var× Sto×NameSE

Tl = Var× Sto×NameSE

−→l= Γl × Tl
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expression transition system = (Γe, Te, −→e)

Γe = Expr

Te = Val

−→e= Γe × Te

C.4. Declaration

declaration transitions system =

−→Dp= (DecP ×Pri)︸ ︷︷ ︸
ΓDp

× (Pri)︸ ︷︷ ︸
TDp

var, rel , pri , pares ` 〈DecP, sto, sta〉 −→Dp 〈sto, sta〉
−→Do= (DecO × Sta)× (Sta)

s ` 〈DecO, sta〉 −→Do 〈sta〉
−→Dv= (DecV ×Var× Sto)× (Var× Sto)

〈Stmt, pri〉 −→Dv 〈pri〉
−→Dr= (DecR × Sta×Rel)× (Sta×Rel)

var, sto, pri , s ` 〈DecR, sta, rel〉 −→Dr 〈sta, rel〉
−→Ds= (DecS × Sto× Sta)× (Sto× Sta)

〈sto, sta〉 −→Ds 〈sto, sta〉
−→rel= (Stmt×Var×Rel)× (Var×Rel)

〈var, rel〉 −→rel 〈var, rel〉
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var, sto, pri , pares ` 〈state s { Dp Do Dv Dr Ds1 } Ds2, sto, sta
′〉 −→Ds 〈sto′, sta ′′〉

var, sto, pri , pares ` 〈default state s { Dp Do Dv Dr Ds1 } Ds2, sto, sta〉 −→Ds 〈sto′, sta ′′〉
where (pr, po, pp, pc) = sta(pares) and pc = ε and sta ′ = sta[pares 7→ (pr, po, pp, s)]

(DEC-STATE-DEFAULT)

var, rel , pri , pares ` 〈Dp, pri〉 −→Dp 〈pri ′〉
s ` 〈Do, sta ′〉 −→Do 〈sta ′′〉
〈Dv, var, sto〉 −→Dv 〈var′, sto′〉

var′, sto′, pri ′, s ` 〈Dr, sta ′′, rel〉 −→Dr 〈sta ′′′, rel ′〉
var′, sto′, pri ′, s ` 〈Ds1, sto

′, sta ′′′〉 −→Ds 〈sto′′, sta ′′′′〉
var, sto, pri , pares ` 〈Ds2, sto

′′, sta ′′′′〉 −→Ds 〈sto′′′, sta ′′′′′〉
var, sto, pri , pares ` 〈state s { Dp Do Dv Dr Ds1 } Ds2, sto, sta〉 −→Ds 〈sto′′′, sta ′′′′′〉

where (pr, po, pp, pc) = sta(pares) and sta ′ = sta[s 7→ (pr, ε, pares, ε)]

(DEC-STATE)

var, sto, pri , pares ` 〈ε, sto, sta〉 −→Ds 〈sto, sta〉(DEC-STATE-EMPTY)

var, rel , pri , pares ` 〈Dp, pri〉 −→Dp 〈pri ′〉 〈s, pri ′〉 −→Dp 〈pri ′′〉
var, rel , pri , pares ` 〈s, Dp, pri〉 −→Dp 〈pri ′′〉

(DEC-PRIORITY-LIST)

var, rel , pri , pares ` 〈s, pri〉 −→Dp 〈pri [s 7→ p][next 7→ p+ 1]〉 where p = pri(next)

(DEC-PRIORITY-ELEMENT)

s ` 〈onenter : S, sta〉 −→Do 〈sta ′〉
where sta ′ = sta[s 7→ (r∗, S, pares, childs)]

and (r∗, ε, pares, childs) = sta(s)

(DEC-ONENTER)

s ` 〈ε, sta〉 −→Do 〈sta〉(DEC-ONENTER-EMPTY)

var, sto ` 〈e, var, sto〉 −→e v 〈Dv, var, sto〉 −→Dv 〈var′, sto′〉
〈t x = e Dv, var, sto〉 −→Dv 〈var′[x 7→ l], sto′[l 7→ v][next 7→ next(l)]〉

where l = var[next]

(DEC-VAR)

〈ε, var, sto〉 −→Dv 〈var, sto〉(DEC-VAR-EMPTY)
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〈c, rel〉 −→rel 〈rel ′〉 var, sto, pri , s ` 〈Dr, sta ′, rel ′〉 −→Dr 〈sta ′′, rel ′′〉
var, sto, pri , s ` 〈when c Dr, sta, rel〉 −→Dr 〈sta ′′, rel ′′〉

where sta ′ = sta[s 7→ sta(s) ∪ {(c, var)}]

(DEC-REACTION)

var, sto, pri , s ` 〈ε, sta, rel〉 −→Dr 〈sta, rel〉(DEC-REACTION-EMPTY)

〈S, var, rel〉 −→rel 〈var, rel ′〉 〈c, var, rel ′〉 −→rel 〈var, rel ′′〉
〈e : S c, var, rel〉 −→rel 〈var, rel ′′〉

(DEC-CAS)

〈ε, var, rel〉 −→rel 〈var, rel〉(DEC-CAS-EMPTY)

〈S, var, rel〉 −→rel 〈var, rel〉 where S ∈ {ε, transition( s )}
(DEC-STMT-IGNORE)

〈e, var, rel〉 −→rel 〈var′, rel ′〉
〈t x = e, var, rel〉 −→rel 〈var′[x 7→ var(next)], rel ′〉

(DEC-STMT-VAR)

〈e, var, rel〉 −→rel 〈var′, rel ′〉
〈x = e, var, rel〉 −→rel 〈var′, rel ′[(r,writer) 7→ rel(r,writer) ∪ {l}]〉

where l = var(x)

(DEC-STMT-ASS)

〈S1, var, rel〉 −→rel 〈var′, rel ′〉 〈S2, var
′, rel ′〉 −→rel 〈var′′, rel ′′〉

〈S1; S2, var, rel〉 −→rel 〈var′′, rel ′′〉
(DEC-STMT-SEQ)

〈e1, var, rel〉 −→rel 〈var, rel ′〉 〈e1, var, rel
′〉 −→rel 〈var, rel ′′〉

〈e1 op e2, var, rel〉 −→rel 〈var, rel ′′〉
where op ∈ {+, -, *, /, ==, !=, <, >, <=, >=, ||, &&}

(DEC-EXPR-BIN)

〈e, var, rel〉 −→rel 〈var, rel ′〉
〈!e, var, rel〉 −→rel 〈var, rel ′〉

(DEC-EXPR-SIN)

〈n, var, rel〉 −→rel 〈var, rel〉(DEC-EXPR-NUM)

〈x, var, rel〉 −→rel 〈var, rel [(x, reader) 7→ rel(x, reader) ∪ {r}]〉(DEC-EXPR-VAR)
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C.5. Global

global transitions system = (Γg, =⇒g)

Γg = DecS ∪ (Rea∗ × Sto×NameS︸ ︷︷ ︸
currs

×NameSE︸ ︷︷ ︸
nexts

)

=⇒g= Γg × Γg

var, rel , pri ` 〈Ds, sto, sta〉 −→Ds 〈sto′, sta ′〉
sta, rea ` 〈Ds〉 =⇒g 〈∅, sto′, Global, ε〉

where var, sto, rel , pri , sta = ∅⇀ ∅

(GLOBAL-STARTER)

〈c, var′, sto, nexts〉 −→l 〈var, sto′, next ′s〉
sta, rea ` 〈{..., r, ...}, sto, currs,nexts〉 =⇒g 〈{..., ...}, sto′, currs,next ′s〉

where (c, var′, pri) = r

(GLOBAL-REACTION)

currs ` 〈nexts, sto, ε〉 −→t 〈sto′,next ′s〉
sta, rea ` 〈∅, sto, currs,nexts〉 =⇒g 〈{r1, r2 , ..., ri}, sto′,nexts,next ′s〉

where ({r1, r2 , ..., ri}, S, pares, childs) = sta(nexts) and childs = ε

(GLOBAL-EMPTY-TRANSITION)

sta, rea ` 〈∅, sto, currs,nexts〉 =⇒g 〈∅, sto, currs,next ′s〉
where (−,−,−,next ′s) = sta(currs) and curr ′s 6= ε

(GLOBAL-EMPTY-TRAVERSE)

sta, rea ` 〈{..., r1, ..., r2, ...}, sto, currs,nexts〉 =⇒g 〈{..., r2; r1, ...}, sto, currs,nexts〉

where
∃l ∈ rel(r2,writer) : l ∈ rel(r1, reader)

∀l ∈ rel(r1,writer) : l /∈ rel(r2,writer) ∪ rel(r2, reader)

(GLOBAL-MERGE-CONCATENATE)

sta, rea ` 〈{..., r1, ..., r2; r3, ...}, sto, currs,nexts〉 =⇒g 〈{..., r2; r1; r3, ...}, sto, currs,nexts〉

where

∃l ∈ rel(r2,writer), l ∈ rel(r1,writer)

∃l ∈ rel(r1,writer), l ∈ rel(r3, reader)

∀l ∈ rel(r3,writer), l /∈ rel(r1, reader) ∪ rel(r1,writer)

∀l ∈ rel(r3,writer), l /∈ rel(r2, reader) ∪ rel(r2,writer)

∀l ∈ rel(r1,writer), l /∈ rel(r2, reader) ∪ rel(r2,writer)

(GLOBAL-MERGE-INSERT)
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C.6. Transition

transition transition system = (Γt, Tt, −→t)

Γt = NameS × Sto×NameSE

Tt = Sto×NameSE

−→t= Γt × Tt
currs,nexts ` 〈s, var, sto,nexts〉 −→t 〈var, sto,nexts〉

〈S, var, sto,nexts〉 −→l 〈var′, sto′,next ′s〉
currs ` 〈s, sto,nexts〉 −→t 〈sto′,next ′s〉

where (−,−, pares,−) = sta(s) and pares ∈ anc(currs)

(TRANS-TOP)

currs ` 〈pares, sto,nexts〉 −→t 〈sto′,next ′s〉 〈S, var, sto′,next ′s〉 −→l 〈var, sto′′,next ′′s〉
currs,nexts ` 〈s, sto,nexts〉 −→t 〈sto′′,next ′′s〉

where (−, S, pares,−) = sta(nexts) and pares /∈ anc(currs)

(TRANS-TRAVERSING)
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C.7. Local

local transition system = (Γl, Tl, −→l)

Γl = Stmt×Var× Sto×NameSE

Tl = Var× Sto×NameSE

−→l= Γl × Tl

〈ε, var, sto, nexts〉 −→l 〈var, sto, nexts〉(LOCAL-EMPTY)

〈S, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉
〈e : S c, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉

where e −→e true

(LOCAL-CASE-TRUE)

〈c, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉
〈e : S c, var, sto, nexts〉 −→l 〈var, sto′, next ′s〉

where e −→e false

(LOCAL-CASE-FALSE)

〈S1, var, sto, nexts〉 −→l 〈var′, sto′, next ′s〉 〈S2, var
′, sto′, next ′s〉 −→l 〈var′′, sto′′, ′′〉

〈 S1; S2, var, sto, nexts〉 −→l 〈var′′, sto′′, ′′〉

(LOCAL-STMT-SEQUENCE)

〈enter( s ), var, sto, ε〉 −→l 〈var, sto, s〉(LOCAL-STMT-TRANSITION-FIRST)

〈enter( s ), var, sto, nexts〉 −→l 〈var, sto, s〉 where pri(s) > pri(nexts)

(LOCAL-STMT-TRANSITION-REPLACE)

〈enter( s ), var, sto, nexts〉 −→l 〈var, sto, nexts〉 where pri(nexts) > pri(s)

(LOCAL-STMT-TRANSITION-SKIP)

var, sto ` e −→e v

〈t x = e, var, sto, nexts〉 −→l 〈var′, sto′, nexts〉
where l = sto(next) and var′ = var[x 7→ l][next 7→ next(l)] and sto′ = sto[l 7→ v]

(LOCAL-STMT-VAR-DEC)

〈x = e , var, sto, nexts〉 −→l 〈var, sto[l 7→ v], nexts〉
where var, sto ` e −→e v and l = var(x)

(LOCAL-STMT-ASS)
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C.8. Expression

expression transition system = (Γe, Te, −→e)

Γe = Expr

Te = Val

−→e= Γe × Te

var, sto ` var, sto ` n −→e v where N (n) = v(EXPT-NUMERAL)

var, sto ` var, sto ` x −→e v where v = sto(var(x))(VAR-REF)

var, sto ` ( e ) −→e v(EXPR-PARENTHESIS)

var, sto ` x.read() −→e v where v = the value of the pin at sto(var(x))

(EXPR-PIN-READ)

var, sto ` e −→e v1

var, sto ` x.write( e ) −→e v2

where The pin is set to v and v2 = void
(EXPR-PIN-WRITE)

var, sto ` e −→e v1

var, sto ` x.println( e ) −→e v2

where Write v1 to the serial connection at sto(var(x)) and v2 = void

(EXPR-SERIAL-PRINTLN)

var, sto ` x.toggle −→e v

where The pin is set to the opposite possible value and v = void

(EXPR-PIN-TOGGLE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 + e2〉 −→e v
where v = v1 + v2(EXPR-ADD)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 - e2〉 −→e v
where v = v1 − v2(EXPR-SUB)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 * e2〉 −→e v
where v = v1 · v2(EXPR-MULT)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 / e2〉 −→e v
where v = v1

v2
(EXPR-DIV)
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var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 == e2〉 −→e true
where v1 = v2(EXPR-EQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 == e2〉 −→e false
where v1 6= v2(EXPR-EQUAL-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 != e2〉 −→e true
where v1 6= v2

(EXPR-NOTEQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 != e2〉 −→e false
where v1 = v2

(EXPR-NOTEQUAL-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 < e2〉 −→e true
where v1 < v2

(EXPR-LESSTHAN-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 < e2〉 −→e false
where v1 > v2

(EXPR-LESSTHAN-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 > e2〉 −→e true
where v1 > v2

(EXPR-BIGGERTHAN-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 > e2〉 −→e false
where v1 < v2

(EXPR-BIGGERTHAN-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 <= e2〉 −→e true
where v1 = v2 ∨ v1 < v2

(EXPR-LESSTHANOREQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 <= e2〉 −→e false
where v1 > v2

(EXPR-LESSTHANOREQUAL-FALSE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 >= e2〉 −→e true
where v1 = v2 ∨ v1 > v2

(EXPR-GREATERTHANOREQUAL-TRUE)

var, sto ` e1 −→e v1 var, sto ` e2 −→e v2

var, sto ` 〈e1 >= e2〉 −→e false
where v1 < v2

(EXPR-GREATERTHANOREQUAL-FALSE)

var, sto ` !e −→e true where e −→e false(EXPR-NEGATE-TRUE)

var, sto ` !e −→e false where e −→e true(EXPR-NEGATE-FALSE)
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var, sto ` e1 || e2 −→e true where e1 −→e true ∨ e2 −→e true

(EXPR-BOOLOR-TRUE)

var, sto ` e1 || e2 −→e false where e1 −→e false ∧ e2 −→e false

(EXPR-BOOLOR-FALSE)

var, sto ` e1 && e2 −→e true where e1 −→e true ∧ e2 −→e true

(EXPR-BOOLAND-TRUE)

var, sto ` e1 && e2 −→e false where e1 −→e false ∨ e2 −→e false

(EXPR-BOOLAND-FALSE)
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D. Type rules

Types

B ::= Byte | Int | Long | Float | Bool | Apin | Dpin | Serial | String

Bv ::= B | Void

T ::= B | x : B → ok

Helping functions:

E(ε, E) = E

E(s, Dp,E) = E

E(onenter: S,E) = E(Do,E[S → ok])

E( T x = e Dv,E) = E(Dv,E[x 7→ T ])

E(| e : S c,E) = E(Dc,E[S → ok])

E(when c, E) = E(Dr,E(Dc,E)∗ → ok)

Type rules for e in the abstract syntax. Empty is universal.

E ` ε : ok(Empty)

E ` n : Tn where Tn ∈ {Byte, Int, Long, Float}(Num)

E(x) = T

E ` x : T
(Var)

E ` e : T

E ` (e) : T
(Paren)
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E ` x : Dpin

E ` x.read : Bool
(Pin-Read-Digital)

E ` x : Apin

E ` x.read : Int
(Pin-Read-Analog)

E ` x : Dpin E ` e : Bool

E ` x.write( e ) : Void
(Pin-Write-Digital)

E ` x : Apin E ` e : Tn
E ` x.write( e ) : Void

where Tn ∈ {Byte, Int, Long}(Pin-Write-Analog)

E ` x : Dpin

E ` x.toggle : Void
(Pin-Toggle)

E ` x : Serial E ` e : Tp
E ` x.println( e ) : Void

where Tp ∈ B(Serial-Prinln)

E ` e1 : Tn E ` e2 : Tn
E ` e1 + e2 : Tn

where Tn ∈ {Byte, Int, Long, Float}(Add)

E ` e1 : Tn E ` e2 : Tn
E ` e1 - e2 : Tn

where Tn ∈ {Byte, Int, Long, Float}(Sub)

E ` e1 : Tn E ` e2 : Tn
E ` e1 * e2 : Tn

where Tn ∈ {Byte, Int, Long, Float}(Mult)

E ` e1 : Tn E ` e2 : Tn
E ` e1 / e2 : Tn

where Tn ∈ {Byte, Int, Long, Float}(Div)

E ` e1 : T E ` e2 : T

E ` e1 == e2 : Bool
(Equals)

E ` e1 : T E ` e2 : T

E ` e1 != e2 : Bool
(NotEq)

E ` e1 : Tn E ` e2 : Tn
E ` e1 < e2 : Bool

where Tn ∈ {Byte, Int, Long, Float}(Less)

E ` e1 : Tn E ` e2 : Tn
E ` e1 > e2 : Bool

where Tn ∈ {Byte, Int, Long, Float}(Great)

E ` e1 : Tn E ` e2 : Tn
E ` e1 <= e2 : Bool

where Tn ∈ {Byte, Int, Long, Float}(LessEq)

E ` e1 : Tn E ` e2 : Tn
E ` e1 >= e2 : Bool

where Tn ∈ {Byte, Int, Long, Float}(GreatEq)
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E ` e1 : Bool

E ` !e1 : Bool
(Neg-Bool)

E ` e : Tn
E ` -e : Tn

where Tn ∈ {Byte, Int, Long, Float}(Neg-Num)

E ` e1 : Bool E ` e2 : Bool

E ` e1 || e2 : Bool
(Or)

E ` e1 : Bool E ` e2 : Bool

E ` e1 && e2 : Bool
(And)

Type rules for Dp in the abstract syntax

E ` s : ok E ` Dp : ok

E ` s, Dp : ok
(Priority list declaration)

E ` s : ok(Single state priority)

Type rules for Do in the abstract syntax

E ` S : ok

E ` onenter: S : ok
(Onenter declaration)

Type rules for Dv in the abstract syntax

E ` e : T E1 ` Dv : ok

E ` T x = e Dv : ok
where E1 = E(Dv,E)(Variable Declaration)

Type rules for Ds in the abstract syntax

E ` s : ok E ` Dp : ok E ` Do : ok E1 ` Dv : ok E2 ` Dr : ok E3 ` Ds1 : ok E3 ` Ds2 : ok

E ` state s { Dp Do Dv Dr Ds1} Ds2 : ok

where E1 = E(Do,E) and E2 = E(Dv,E1) and E3 = E(Dr,E2)

(State declaration)

Type rules for Dr in the abstract syntax

E ` c : ok

E ` when c : ok
(React)

Type rules for c in the abstract syntax

E ` e : ok E ` S : ok E1 ` c : ok

E ` | e : S c : ok
where E1 = E[S → ok](Case)

99



Type rules for S in the abstract syntax

E ` S1 : ok E1 ` S2 : ok

E ` S1;S2 : ok
where E1 = E[S1 → ok](Sequence)

E ` x : T E ` e : T

E ` x = e : ok
(Assignment)

E ` s : ok

E ` transition( s ) : ok
(EnterState)

E ` e : Tv
E ` e : ok

where Tv ∈ Bv(Statement-Expression)

Type rules for p in the abstract syntax

E ` Ds : ok(Program)
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E. Code Examples

E.1. DigitalReadSerial Example - Arduino Language

1 int pushButton = 2;

2
3 void setup() {

4 Serial.begin(9600);

5 pinMode(pushButton, INPUT);

6 }

7
8 void loop() {

9 int buttonState = digitalRead(pushButton);

10 Serial.println(buttonState);

11 delay(1);

12 }

E.2. DigitalReadSerial Example - Rios

1 dpin pushButton = @ 2

2 serial sout = $ usb 9600

3
4 every 1ms : sout.println(pushButton.read())
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